Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «Fragments of Earth Lore: Sketches & Addresses Geological and Geographical», страница 25

Шрифт:

Summing up what we know of the principal geographical changes that took place during the Mesozoic era, we are impressed with the fact that, all through those changes, a wide land-surface persisted in the north and north-west of the European area, just as was the case in Palæozoic times. The highest grounds were the Urals and the uplands of Scandinavia and Britain. In middle Europe the Pyrenees and the Alps were as yet inconsiderable heights, the loftiest lands being those of the Harz, the Riesen Gebirge, and other regions of Palæozoic and Archæan rocks. The lower parts of England and the great plains of central Europe were sometimes submerged in the waters of a more or less continuous sea; but ever and anon elevation ensued, and the sea was divided, as it were, into a series of great lakes. In the south of Europe a Mediterranean Sea would appear to have endured all through the Mesozoic era – a Mediterranean of considerably greater extent, however, than the present. Thus we see the main features of our Continent were already clearly outlined before the close of the Cretaceous period. The continental area then, as now, consisted of a wide belt of high-ground in the north, extending roughly from south-west to north-east; south of this a vast stretch of low-grounds, sweeping from west to east up to the foot of the Urals, and bounded on the south by an irregular zone of elevated land having approximately the same trend; still further south, the maritime tracts of the Mediterranean basin. During periods of depression the low-grounds of central Europe were invaded by the sea, and the Mediterranean at the same time extended north over many regions which are now dry land. It is in these two low-lying tracts, therefore, and the country immediately adjoining them, that the Mesozoic strata of Europe are chiefly developed.

A general movement of upheaval112 supervened at the close of the Cretaceous period, and the sea which, during that period, overflowed so much of middle Europe had largely disappeared before the beginning of Eocene times. The southern portions of the continent, however, were still mostly under water, while great bays and arms of the sea extended northwards now and again into central Europe. On to the close of the Miocene period, indeed, southern and south-eastern Europe consisted of a series of irregular straggling islands and peninsulas washed by the waters of a genial sea. Towards the close of early Cainozoic times, the Alps, which had hitherto been of small importance, were greatly upheaved, as were also the Pyrenees and the Carpathians. The floor of the Eocene sea in the Alpine region was ridged up for many thousands of feet, its deposits being folded, twisted, inverted, and metamorphosed. Another great elevation of the same area was effected after the Miocene period, the accumulations of that period now forming considerable mountains along the northern flanks of the Alpine chain. Notwithstanding these gigantic elevations in south-central Europe – perhaps in consequence of them – the low-lying tracts of what is now southern Europe continued to be largely submerged, and even the middle regions of the continent were now and again occupied by broad lakes which sometimes communicated with the sea. In Miocene times, for example, an arm of the Mediterranean extended up the Rhone valley, and stretched across the north of Switzerland to the basin of the Danube. After the elevation of the Miocene strata these inland stretches of sea disappeared, but the Mediterranean still overflowed wider areas in southern Europe than it does in our day. Eventually, however, in late Pliocene times, the bed of that sea experienced considerable elevation, newer Pliocene strata occurring in Sicily up to a height of 3000 feet at least. It was probably at or about that period that the Black Sea and the Sea of Asov retreated from the wide low-grounds of southern Russia, and that the inland seas and lakes of Austria-Hungary finally vanished.

The Cainozoic era is distinguished in Europe for its volcanic phenomena. The grandest eruptions were those of Oligocene times. To that date belong the basalts of Antrim, Mull, Skye, the Faröe Islands, and the older series of volcanic rocks in Iceland. These basalts speak to us of prodigious fissure eruptions, when molten rock welled up along the lines of great cracks in the earth’s crust, flooding wide regions, and building up enormous plateaux, of which we now behold the merest fragments. The ancient volcanoes of central France, those of the Eifel country and many other places in Germany, and the volcanic rocks of Hungary, are all of Cainozoic age; while, in the south of Europe, Etna, Vesuvius, and other Italian volcanoes date their origin to the later stages of the same great era.

Thus before the beginning of Pleistocene times all the main features of Europe had come into existence. Since the close of the Pliocene period there have been many great revolutions of climate; several very considerable oscillations of the sea-level have taken place, and the land has been subjected to powerful and long-continued erosion. But the greater contours of the surface which began to appear in Palæozoic times, and which in Mesozoic times were more strongly pronounced, had been fully evolved by the close of the Pliocene period. The most remarkable geographical changes which have taken place since then have been successive elevations and depressions, in consequence of which the area of our Continent has been alternately increased and diminished. At a time well within the human period our own islands have been united to themselves and the Continent, and the dry land has extended north-west and north, so as to include Spitzbergen, the Faröe Islands, and perhaps Iceland. On the other hand, our islands have been within a recent period largely submerged.

The general conclusion, then, to which we are led by a review of the greater geographical changes through which the European continent has passed is simply this – that the substructure upon which all our sedimentary strata repose is of primeval antiquity. Our dry lands are built up of rocks which have been accumulated over the surface of a great wrinkle of the earth’s crust. There have been endless movements of elevation and depression, causing minor deformations, as it were, of that wrinkle, and inducing constant changes in the distribution of land and water; but no part of the continental ridge has ever been depressed to an abysmal depth. The ridge has endured through all geological time. We can see also that the land has been evolved according to a definite plan. Certain marked features begin to appear very early in Palæozoic times, and become more and more pronounced as the ages roll on. All the countless oscillations of level, all the myriad changes in the distribution of land and water, all the earthquake disturbances and volcanic eruptions – in a word, all the complex mutations to which the geological record bears witness – have had for their end the completion of one grand design.

A study of the geological structure of Europe – an examination of the manner in which the highly folded and disturbed strata are developed – throws no small light upon the origin of the larger or dominant features of our Continent. The most highly convoluted rocks are those of Archæan and Palæozoic age, and these are developed chiefly in the north-western and western parts of the Continent. Highly contorted strata likewise appear in all the mountain-chains of central Europe – some of the rocks being of Palæozoic, while others are of Mesozoic and of Cainozoic age. Leaving these mountains for the moment out of account, we find that it is along the western and north-western sea-board where we encounter the widest regions of highly-disturbed rocks. The Highlands of Scandinavia and Britain are composed, for the most part, of highly-flexed and convoluted rocks, which speak to titanic movements of the crust; and similar much-crushed and tilted rock-masses occur in north-west France, in Portugal, and in western Spain. But when we follow the highly-folded Palæozoic strata of Scandinavia into the low-grounds of the great plains, they gradually flatten out, until in Russia they occur in undisturbed horizontal positions. Over thousands of square miles in that country the Palæozoic rocks are just as little altered and disturbed as strata pertaining to Mesozoic and Cainozoic times.

These facts can have but one meaning. Could we smooth out all the puckerings, creases, foldings, and flexures which characterise the Archæan and Palæozoic rocks of western and north-western Europe, it is certain that these strata would stretch for many miles out into the Atlantic. Obviously they have been compressed and crumpled up by some force acting upon them from the west. Now, if it be true that the basin of the Atlantic is of primeval origin, then it is obvious that the sinking down of the crust within that area would exert enormous pressure upon the borders of our continental area. As cooling and contracting of the nucleus continued, subsidence would go on under the oceanic basin, depression taking place either slowly and gradually, during protracted periods, or now and again more or less suddenly. But whether gradually or suddenly effected, the result of the subsidence would be the same upon the borders of our Continent; the strata along the whole western and north-western margins of the European ridge would necessarily be flexed and disturbed. Away to the east, however, the strata, not being subject to the like pressure, would be left in their original horizontal positions.

Now it can be shown that the mountains of Scandinavia and the British Islands are much older than the Alps, the Pyrenees, and many other conspicuous ranges in central and southern Europe. Our mountains and those of Scandinavia are the mere wrecks of their former selves. Originally they may have rivaled – they probably exceeded – the Alps in height and extent. It is most likely, indeed, that the areas of Palæozoic rocks in France, Portugal, and Spain also attained mountainous elevations. But the principal upheaval of the western margins of our Continent was practically completed before the close of the Palæozoic period, and since that time those elevated regions have been subjected to prodigious erosion, the later formations being in large measure composed of their débris. I do not, of course, wish it to be understood that there has been no upheaval affecting the west of Europe since Palæozoic times. The tilted position of many of our Mesozoic strata clearly proves the contrary. But undoubtedly the main disturbances which produced the folding, fracturing, and contortion of the Palæozoic strata of western Europe took place before the close of the Palæozoic period. The mountains of Britain and Scandinavia are amongst the oldest in Europe.

When we come to inquire into the origin of the mountains of central Europe we have little difficulty in detecting the chief factors in their formation. An examination of the Pyrenees, the Alps, and other hill-ranges having the same general trend shows us that they consist of flexed and convoluted rocks. They are, in short, mountains of elevation, ridged up by tangential thrusts. Of this we need not have the slightest doubt. If, for example, we approach the Alps from the low-grounds of France, we observe the strata as we come towards the Jura beginning to undulate – the undulations becoming more and more marked, and passing into sharp folds and plications, until, in the Alps, the beds become twisted, convoluted, and bent back upon themselves in the wildest confusion. Now, speaking in general terms, we may say that similar facts confront us in connection with every true mountain-range in central Europe. Let it be noted, further, that all those ranges have the same trend, which we may take to be approximately east and west, or nearly at right angles to the trend of the Palæozoic high-grounds of western and north-western Europe. Looked at broadly, our continental ridge may be said to be traversed from west to east by two wide depressions or troughs, separated by the intervening belt of higher grounds just referred to. The former of these troughs corresponds to the great central plain, which passes through the south of England, north-east France, the Low Countries, and Denmark, whence it sweeps east through Germany, and expands into the wide low-grounds of Russia. The southern trough or depression embraces the maritime tracts of the Mediterranean and the regions which that sea covers. Such, then, are the dominant features of our Continent, to which all others are of subordinate importance. Now it cannot be doubted that the two great troughs are belts of subsidence in the continental ridge itself. And their existence explains the origin of the mountain-ranges which separate them. We know that the northern trough is of extreme antiquity; it is older, at all events, than the Silurian period. Even at that distant date its southern limits were marked out by ridges of Archæan rocks, which seem to have formed islands in what is now middle Germany, and probably also in Switzerland and central France. The appearance of those Archæan rocks in central Europe was doubtless due to a ridging up of the crust induced by those parallel movements of subsidence which produced the northern and southern troughs. The northern trough was probably always the shallower depression of the two, for we have evidence to show that, again and again in Mesozoic and later times, the seas which overflowed what are now the central plains of Europe were of less considerable depth than that which occupied the Mediterranean trough. As time rolled on, therefore, the northern trough eventually became silted up; but so low even now is the level of that trough that a relatively slight depression would cause the sea to inundate most extensive regions in middle Europe.

In Cainozoic times, as we have seen, the last great elevation of the Alps was effected – an elevation which can hardly have been due to any other cause than the more or less abrupt depression of the earth’s crust under the Mediterranean basin. The area of that sea is now much less considerable than it was in Tertiary times – a change due in part to silting up, but chiefly perhaps to the sinking down of its bed to profounder depths.

Thus we may conclude that from a very early period – a period ante-dating the formation of our oldest fossiliferous strata – the physical structure of our Continent had already been planned. The dominant features of the primeval continental ridge are those which have endured through all geological time. They are the lines along which the beautiful lands in which we dwell have been constructed. Tilted and convoluted, broken and crushed by myriad earth-movements – scarred, furrowed, worn and degraded by the frosts, the rains, the rivers, and the seas of countless ages – the rocks of our Continent are yet eloquent of design. Where the ignorant sees nothing save confusion and discord, the thoughtful student beholds everywhere the evidence of a well-ordered evolution. Such is the conclusion to which we are led by all geological research.

XII.
The Evolution of Climate. 113

One of the most interesting questions with which geological science has to deal is that of the evolution of climate. Although there is no general agreement as to how former climatic fluctuations came about, yet the prevalent opinion is that in the past, just as in the present, the character of the climate must have depended mainly on latitude and the relative position of the great land- and water-areas. This was the doctrine taught by Lyell, and its cogency none will venture to dispute. It is true he postulated a total redistribution of oceans and continents – a view which the progress of science has shown to be untenable. We can no longer speculate with him on the possibility of all the great land-areas having been grouped at one time round the equator, and at some other period about the poles. On the contrary, the evidence goes to show that the continents have never changed places with the ocean – that the dominant features of the earth’s crust are of primeval antiquity, and ante-date the oldest of the fossiliferous formations. The whole question of climatic changes, therefore, must be reconsidered from the point of view of the modern doctrine of the permanency of continental and oceanic areas.

But before proceeding to this discussion, it may be well to glance for a moment at the evidence from which it has been inferred that the climate of the world has varied. Among the chief proofs of climatic fluctuations are the character and the distribution of former floras and faunas. It is true, fossils are, for the most part, relics of extinct forms, and we cannot assert of any one of these that its environment must have been the same as that of some analogous living type. But, although we can base no argument on individual extinct forms, it does not follow that we are precluded from judging of the conditions under which a whole suite of extinct organisms may have lived. Doubtless, we can only reason from the analogy of the present; but, when we take into account all the forms met with in some particular geological system, we seem justified in drawing certain conclusions as to the conditions under which they flourished. Thus, should we encounter in some great series of strata many reef-building corals, associated with large cephalopods and the remains of tree-ferns and cycads, which last from their perfect state of preservation could not have drifted far before they became buried in sediment, we should surely be entitled to conclude that the strata in question had been deposited in the waters of a genial sea, and that the neighbouring land likewise enjoyed a warm climate. Again should a certain system, characterised by the presence of some particular and well-marked flora and fauna, be encountered not only in sub-tropical and temperate latitudes but also far within the Arctic Circle, we should infer that such a flora and fauna lived under climatic conditions of a very different kind from any that now exist. The very presence, in the far north, of fossils having such a geographical distribution would show that the temperature of polar seas and lands could not have been less than temperate. When such broad methods of interpretation are applied to the problems suggested by former floras and faunas, we seem compelled to conclude that the conditions which determined the distribution of life in bygone ages must have been, upon the whole, more uniform and equable than they are now. It is unnecessary that I should go into detailed proof; but I may refer, by way of illustration, to what is known of the Silurian and Carboniferous fossils of the arctic regions. Most of these occur also in the temperate latitudes of Europe and North America, while many are recognised as distinctive types of the same strata nearly all the world over. As showing how strongly the former broad distribution of life-forms is contrasted with their present restricted range, Professor Heilprin has cited the Brachiopoda. Taking existing species and varieties as being 135 in number, he remarks that “there is scarcely a single species which can be said to be strictly cosmopolitan in its range, although not a few are very widely distributed; and, if we except boreal and hyperboreal forms, but a very limited number whose range embraces opposite sides of the same ocean. On the other hand, if we accept the data furnished by Richthofen concerning the Chinese Brachiopoda we find that out of a total of thirteen Silurian and twenty-four Devonian species, no less than ten of the former and sixteen of the latter recur in the equivalent deposits of western Europe: and, further, that the Devonian species furnish eleven, or nearly 50 per cent. of the entire number, which are cosmopolitan or nearly so. Again, of the twenty-five Carboniferous species, North America holds fully fifteen, or 60 per cent., and a very nearly equal number are cosmopolitan.” The same palæontologist reminds us that by far the greater number of fossils which occur in the Palæozoic strata of Australia are present also in regions lying well within the limits of the north temperate zone. “In fact,” he continues, “the relationship between this southern fauna and the faunas of Europe and North America is so great as to practically amount to identity.”

But, side by side with such evidence of broad distribution, we are confronted with facts which go to show that, even at the dawn of Palæozoic times, the oceanic areas at all events had their more or less distinct life-provinces. While many of the old forms were cosmopolitan, others were apparently restricted in their range. It would be strange, indeed, had it been otherwise; for, however uniform the climatic conditions may have been, still that uniformity was only comparative. An absolutely uniform world-climate is well-nigh inconceivable. All we can maintain is that the conditions during certain prolonged periods were so equable as to allow of the general diffusion of species over vastly greater areas than now; and that such conditions extended from low latitudes up to polar regions. Now, among the chief factors which in our day determine the limitation of faunas and floras, we must reckon latitude and the geographical position of land and water. What, then, it may be asked, were the causes which allowed of the much broader distribution of species in former ages?

It is obvious that before a completely satisfactory answer to that question can be given, our knowledge of past geographical conditions must be considerably increased. If we could prepare approximately correct maps and charts to indicate the position of land and sea during the formation of the several fossiliferous systems, we should be able to reason with some confidence on the subject of climate. But, unfortunately, the preparation of such correct maps and charts is impossible. The data for compilations of the kind required are still inadequate, and it may well be doubted whether, in the case of the older systems, we shall ever be able to arrive at any detailed knowledge of their geographical conditions. Nevertheless, the geological structure of the earth’s crust has been so far unravelled as to allow us to form certain general conceptions of the conditions that must have attended the evolution of our continents. And it is with such general conceptions only that I have at present to deal.

I said a little ago that the question of geological climates must now be considered from the point of view of the permanency of the great dominant features of the earth’s crust. I need not recapitulate the evidence upon which Dana and his followers have based this doctrine of the primeval antiquity of our continental and oceanic areas. It is enough if I remind you that by continental areas we simply mean certain extensive regions in which elevation has, upon the whole, been in excess of depression; by oceanic area, on the other hand, is meant that vast region throughout which depression has exceeded elevation. Thus, while the area of permanent or preponderating depression has, from earliest geological times, been occupied by the ocean, the continental areas have been again and again invaded by the sea – and even now extensive portions are under water. It is not only the continental dry land, therefore, but all the bordering belt of sea-floor which does not exceed 1000 fathoms or so in depth, that must be included in the region of dominant elevation. Were the whole of this region to be raised above the level of the sea, the present continents would become connected so as to form one vast land-mass, or continental plateau. (D, Plate IV.)

All the sedimentary strata with which we are acquainted have been accumulated over the surface of that great plateau, and consequently are of comparatively shallow-water origin. They show us, in fact, that at no time in geological history has that plateau ever been drowned in depths at all comparable to those of the deeper portions of our oceanic troughs. The stratified rocks teach us, moreover, that the present land-areas have been gradually evolved, and that, notwithstanding many oscillations of level, these areas have continued to increase in extent – so that there is probably more land-surface now than at any previous era in the history of our globe. To give even a meagre outline of the evidence bearing upon this interesting subject is here impossible. All that I can do is to indicate very briefly some of the general results to which that evidence seems to lead.

The oldest rocks with which we are acquainted are the so-called Archæan schists114 But these have hitherto yielded no unequivocal traces of organic life, and as their origin is still doubtful, it would obviously be futile to speculate upon the geographical conditions of the earth’s surface at the time of their formation. Reliable geological history only begins with the fossiliferous strata of the Palæozoic era. From these we learn that in the European area the Archæan rocks of Britain, Scandinavia, and Finland formed, at that time, the most extensive tract of dry land in our part of the world. How far beyond the present limits of Europe that ancient northern land extended we cannot tell; but it probably occupied considerable regions which are now submerged in the waters of the Arctic Ocean. Further south, the continental plateau appears to have been, for the most part, overflowed by a shallow sea, the surface of which was dotted by a few islands of Archæan rocks, occupying the sites of what are now some of the hills of middle Germany and the Archæan districts of France and the Iberian Peninsula. Archæan rocks occur likewise in Corsica and Sardinia, and again in Turkey: they also form the nuclei of most of the great European mountain-chains, as the Pyrenees, the Alps, the Carpathians, and the Urals. These areas of crystalline schists may not, it is true, have existed as islands at the beginning of Palæozoic times, for they were doubtless ridged up by successive elevations at later dates; but their very presence as mountain-nuclei is sufficient to show that at a very early geological period, the continental plateau could not have been covered by any great depth of sea. We can go further than this – for all the evidence points to the conclusion that, even so far back as Cambrian times, the dominant features of the present European continent had been, as it were, sketched out. Looked at broadly, that part of the great continental plateau upon which our European lands have been gradually built up may be said to be traversed from west to east by two wide depressions, separated by an intervening elevated tract. The former of these depressions corresponds to the great Central Plain which passes through the south of England, north-east of France, and the Low Countries, whence it sweeps through Germany, to expand into the extensive low-grounds of central and northern Russia. The southern depression embraces the maritime tracts of the Mediterranean, and the regions which that sea covers. To these dominant features all the others are of subordinate importance. The two great troughs are belts of depression in the continental plateau itself. The northern one is of extreme antiquity – it is older, at all events, than the Cambro-Silurian period. Even at that distant date its southern limits were marked out by ridges of Archæan rock, which, as I have said, seem to have formed islands in what is now central Europe. It was probably always the shallower depression of the two, for we have evidence to show that again and again, in Mesozoic and later times, the sea that overflowed what are now the central lowlands of Europe was of less considerable depth than that which occupied the Mediterranean trough.

If we turn to North America, we find similar reason to conclude, with Professor Dana, that the general topography of that region had likewise been foreshadowed as far back as the beginning of the Palæozoic era. Dana tells us that even then the formation of its chief mountain-chains had been commenced, and its great intermediate basins were already defined. The oldest lands of North America were built up, as in Europe, of azoic rocks, and were grouped chiefly in the north. Archæan masses extend over an enormous region, from the shores of the Arctic Ocean down to the great lake country, and they are seen likewise in Greenland and many of the Arctic islands. They appear also in the long mountain-chains that run parallel with the coast-lines of the Continent. In a word, the present distribution of the Archæan rocks, and their relation to overlying strata, lead to the belief that in North America, just as in Europe, they form the foundation-stones of that continent, and stretch continuously throughout its whole extent.

We know comparatively little of the geology of the other great land-masses of the globe, but from such evidence as we have there is reason to believe that these in their general structure have much the same story to tell as Europe and North America. In South America, Archæan rocks extend over vast areas in the east and north-east, and reappear in the lofty mountain-chains of the Pacific border. They have been recognised also in various parts of Africa, alike in the north and east, in the interior, and in the west and south. In Asia, again, they occupy wide areas in the Indian Peninsula; they are well developed in the Himalaya, while in China and the mountains and plateaux of central Asia, azoic rocks, which are probably of Archæan age, are well developed. The crystalline schists, which cover extensive tracts in Australia and in the northern island of New Zealand, have also been referred to the same age. Thus, all the world over, Archæan rocks seem to form the surface of the ancient continental plateau upon which all other sedimentary strata have been accumulated. And in every region where Palæozoic rocks occur, we have evidence to prove that at the time these last were formed vast areas of the old continental plateau were under water.

112.I now doubt whether any vertical upheaval of a wide continental area is possible. The so-called “continental uplifts” are probably in most cases rather negative than positive elevations. In other words, the land seems to rise simply because the sea retreats owing perhaps to the sinking of the crust within the great oceanic basins. See on this subject, Article XIII.
113.Address delivered before the Royal Physical Society at the opening of the Session 1889-90.
114.I need hardly remind geologists that some of the so-called “Archæan schists” may really be the highly altered accumulations of later geological periods.
Возрастное ограничение:
12+
Дата выхода на Литрес:
28 октября 2017
Объем:
563 стр. 6 иллюстраций
Правообладатель:
Public Domain
Аудио
Средний рейтинг 4,2 на основе 376 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,3 на основе 489 оценок
По подписке
Аудио
Средний рейтинг 4,6 на основе 689 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,3 на основе 986 оценок
Аудио
Средний рейтинг 4,7 на основе 1829 оценок
Текст, доступен аудиоформат
Средний рейтинг 5 на основе 440 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,7 на основе 1029 оценок
Аудио
Средний рейтинг 5 на основе 433 оценок
Черновик
Средний рейтинг 5 на основе 151 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок