Естествознание и мозг. Сборник главных трудов великого физиолога

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Поясним правило примером на числах. Если одна жидкость переварила 2 мм, а другая за то же время – 3 мм, то относительное количество пепсина в этих жидкостях выражается не числами 2 и 3, а их квадратами, т. е. 4 и 9. Разница очевидна: прямо по миллиметрам выходило, что во втором случае фермента в полтора раза больше, а на основании правила, т. е. по квадратам этих чисел, – в два раза с четвертью. Конечно, это правило было выведено на основании сравнения искусственно и точно составленных растворов пепсина. Результат, полученный Борисовым самостоятельно, был уже до него установлен Шюцем путем определения в растворе помощью поляризационного прибора образующихся при переваривании пептонов. Такое совпадение при различных методах составляет вескую гарантию точности правила. Не могу при этом не выразить сожаления, что меттовский метод, предложенный еще в 1889 г., до сих пор все еще не приобрел себе такого распространения, которого он по справедливости заслуживает. Он мог бы легко стать универсальным методом для измерения силы белковых ферментов, так что все исследования над этими ферментами были бы легко сравниваемы между собой. Нельзя отрицать, что это очень и очень желательно. Тогда все наблюдения над соками различных животных и людей, представляя одну и ту же скалу, повели бы к важным заключениям о колебаниях силы ферментов по индивидуумам, родам и видам животных. Нужно прибавить еще, что в меттовском методе диаметр трубки в широких пределах не имеет значения, а куриные яйца в нашем отношении оказываются чрезвычайно постоянного состава. Шюц-борисовское правило оказалось применимо в полной силе и к трипсину.

Определение других ферментов менее совершенно и в наших исследованиях постоянно подвергалось и подвергается видоизменениям. Крахмальный фермент панкреатического сока долгое время определялся в нашей лаборатории путем известного титрования фелинговою жидкостью сахара, получающегося из крахмала при известных и всегда одинаковых условиях ферментного действия. В таком случае число миллиграммов образованного сахара являлось мерою количества крахмального фермента. Метод этот, давая хорошие и точные цифры, требовал, однако, очень значительного времени и был чувствительно тяжел в таких опытах, где надобилось много определений. Поэтому естественно было искать более скорого метода. В последнее время лаборатория в лице докторов Глинского и Вальтера старалась достигнуть этой цели, настаивая вместе с тем на однообразии метода определения обоих ферментов. Тоненькие стеклянные трубочки наполнялись вареным крахмалом, обыкновенно чем-нибудь подкрашенным, и затем в термостате подвергались определенный срок времени (обыкновенно полчаса) действию испытуемой жидкости. Крахмал с концов растворялся, и граница растворения, благодаря окраске, была вполне резка. Как выше при белке, сосчитывались миллиметры растворенного крахмального столбика. Многократные пробы с искусственным раствором фермента (панкреатический сок, разбавленный в 2–3 раза, и т. д.) установили точные соотношения числа миллиметров с содержанием фермента. Здесь также оказалось вполне приложимо правило Шюца и Борисова, т. е. количества фермента относились как квадраты миллиметров. Поэтому в приводимых нами ниже опытах будут встречаться обе указанные меры крахмального фермента: миллиграммы образованного сахара и миллиметры растворенного крахмального цилиндрика.

К сожалению, все усилия свести и определение жирового фермента к методу цилиндрика в стеклянной трубочке до сих пор оставались бесплодными. В конце концов пришлось пользоваться титрованием баритом смеси жира с панкреатическим соком, стоявшей определенное время при определенной температуре и периодически взбалтываемой. Следовательно, число куб. сантиметров баритового титра, истрачиваемого на образующуюся кислоту, является мерою жирового фермента. Конечно, неудачи не должны останавливать дальнейших попыток и здесь добиться успеха, как с другими ферментами. В настоящем своем виде метод нуждается в постоянном внимании со стороны экспериментатора и потому затруднителен при массе определений по часам или в еще более короткие промежутки времени. К тому же метод этот представляет некоторые колебания в результатах. Однако правило Шюца и Борисова оказалось приложимо и здесь. Конечно, в наших дальнейших опытах, строго говоря, имеется только ферментное действие, и речь о количествах и суммах ферментов должна пониматься условно.

Несколько слов об определении щелочности панкреатического сока. С этою целью сжигали на слабом огне твердый остаток от определенной порции сока и, растворив золу в дистиллированной воде, подвергали ее титрованию. Результат рассчитывался на соду и выражался в процентах взятой первоначально массы сока.

Опыты, перед которыми я прервал изложение ради необходимых предварительных методических разъяснений, приведу опять в виде двух пар: одну – для желудочных желез и другую – для поджелудочной, как доказательство и при колебаниях состава сока в течение отделительного периода той же закономерности, с которою мы уже познакомились выше при колебаниях количества сока по часам (табл. 2 и 3).

То же представляю в виде кривых (рис. 4).

Таблица 2

Ход переваривающей силы в часовых порциях желудочного сока при еде 400 г сырого мяса 15 и 16 мая 1895 г.

(из работы д-ра Лобасова)


Таблица 3

Ход ферментных способностей в часовых порциях поджелудочного сока при еде 600 куб. см молока 27 и 28 декабря 1896 г.

(из работы д-ра Вальтера)


То же представляю в виде кривых (рис. 5).


Рис. 4. Ход переваривающей силы в часовых порциях желудочного сока при еде 400 г сырого мяса 15 мая (а) и 16 мая (b) 1895 г.


Рис. 5. Ход ферментных способностей в часовых порциях поджелудочного сока при еде 600 куб. см молока 27 декабря (а) и 28 декабря (b) 1896 г. с – белковый фермент; d – крахмальный фермент


Как видите, опять поражающая точность в работе: то, что раз требуется от железы, воспроизводится постоянно, что называется, в обрез. Итак, перед нами в полной отчетливости важный для работы желез факт, что железа может готовить сок различного состава, с большим или меньшим содержанием ферментов, с различным содержанием различных ферментов, если их, как в панкреатическом соке, – несколько, изменяя также и другие свойства сока, помимо ферментных. Анализ всех имеющихся у нас в этом отношении цифр, сопоставление их с цифрами хода часовых количеств сока, исключает допущение, что сок только меняет свою концентрацию в зависимости от скорости отделения. Имеются самые разнообразные отношения между водой сока и его ферментами: высокая переваривающая сила встречается как при обильном, так и при скудном выделении сока, а факт неоднообразного колебания различных ферментов в одном и том же соке решительно доказывает способность желез с сложною химическою деятельностью, как панкреатическая, вырабатывать в известные периоды отделительного периода то те, то другие фабрикаты. Что сказано относительно ферментов, то может быть отнесено и к солям сока.

Тем интереснее рядом с этим является факт постоянной, как с правом можно думать, кислотности желудочного сока. Хотя клинические наблюдения отделительной желудочной деятельности человека чуть не ежедневно твердят о колебании кислотности, хотя и в наших наблюдениях, где дело идет об абсолютно чистом соке, эти колебания вполне заметны, тем не менее внимательный пересмотр фактов ведет к почти несомненному заключению, что желудочный сок приготовляется железами всегда с одной и той же кислотностью. Ведь и при нашей методике сок не получается прямо из желез, а, выйдя из них, течет по стенкам желудка, которые покрыты щелочной слизью, и, следовательно, неизбежно подвергается нейтрализованию – уменьшению своей кислотности. Что этому обстоятельству следует приписать видимые колебания кислотности желудочного сока, явствует из многих наблюдений. Почти постоянное явление, что кислотность сока и скорость его отделения крайне тесно связаны между собой: чем сильнее отделение, тем выше кислотность, и наоборот. Эта связь легко понимается с точки зрения нашего объяснения. Чем в большем количестве отделяется сок, чем быстрее он проходит по желудочным стенкам, тем, естественно, он меньше нейтрализуется по всей своей массе, тем его кислотность более приближается к подлинной. Доктор Кетчер с целью проверить это объяснение применил несколько форм опытов. Так как при пустом желудке стенки его обыкновенно покрыты значительным слоем слизи, то понятно, что первые порции начинающего вытекать сока, например под влиянием мнимого кормления, обыкновенно бывают самой низкой кислотности. Чем больше и обильнее вытекает сок, тем кислотность его все повышается. При затихании отделения, очевидно благодаря сильному нейтрализованию слизи, уже не получается той высокой кислотности, которая в начале опыта наблюдалась при той же скорости. Повторяя несколько раз такие обильные, так сказать, обмывания стенок желудка соком, можно иногда совсем разорвать связь между быстротой и кислотностью, т. е. сок остается одинаково высококислым при значительной, как и малой, быстроте отделения. С другой стороны, доктор Кетчер, при том же мнимом кормлении, каждые 5 минут попеременно, то собирал сок при открытой все время фистуле, то выливал его из желудка в конце каждых 5 минут. Оказалось, что почти все разом вылитые порции, т. е. остававшиеся в желудке 5 минут, имели отчетливо более низкую кислотность. Понятно, если в чистом соке указанным образом производятся колебания кислотности, то тем скорее они окажутся в желудке при вступлении в него слюны вместе с пищей. Если все это действительно так, то, следовательно, та или другая надобность в кислоте при пищеварении должна покрываться главным образом за счет массы желудочного сока, а не степени его кислотности. Однако возможно, что нейтрализование слизью сока также представляет нарочитый и приспособленный к известной цели процесс. Даже при нормальном желудке совершенно чистый сок может терять до 25 % своей кислотности благодаря нейтрализованию одной слизью. Почем знать, может быть, природа нашла наиболее выгодным в интересах всего организма или процесса обработки пищи изменять кислотность именно таким образом. Ведь факт измененной кислотности остается фактом, как бы он ни произошел.

 

Вернемся к главной нити нашего изложения. Вы видели на резких примерах, что желудочная и поджелудочная железы в течение периода обработки одной и той же пищи дают сок не однообразного состава, а меняющийся в различных отношениях. В высшей степени любопытная и важная задача – совершенно уяснить: в какой связи находятся эти колебания с ходом пищеварения, с пользой его? Решение этой задачи в целом – дело будущего. Но целесообразность, по крайней мере некоторых пунктов, бросается в глаза и сейчас.

Возьмем первую порцию желудочного сока; она отличается весьма высокой переваривающей силой. Понятно, что это как нельзя более кстати в начале обработки, при наличности всей массы пищи и наибольшей грубости ее внешнего вида. Значит, наисильнейший реактив выливается тогда, когда в нем наибольшая надобность. Объяснение целесообразности изменений в составе панкреатического сока, очевидно, представит большие трудности, так как теперь дело касается позднейшей инстанции завода, где обрабатывается уже измененный и сортированный желудком пищевой материал. К тому же в кишках возникает необходимость создавать благоприятные химические условия для действия поджелудочного сока, изменяя в пищевой массе обстановку желудочного пищеварения, наверное неблагоприятную для поджелудочного. Мы знаем, что пепсин разрушает трипсин, а высокая кислотность вредит проявлению действия трипсина. К затронутым вопросам мы подойдем ближе впоследствии, анализируя подробно механизм возбуждения желез.

Познакомившись со столькими фактами, свидетельствующими о способности желез сообразоваться с каждым моментом пищевой обработки, мы имеем сильное основание ждать, что при разных сортах еды указанная способность должна выступить в полной своей яркости и красоте. Раз пища состоит из различных составных частей, а в пищеварительный канал изливаются различные реактивы, то естественно предполагать, что на известные сорта пищи будут изливаться по преимуществу то те, то другие сока и, ввиду их изменяемости, то с теми, то с другими свойствами. Как же стоит дело на самом деле? Конечно, о такой задаче не могло быть и речи при старых способах исследования, и, обратно, разработка этих вопросов является лучшей рекомендацией, лучшей заслугой новых методов. Теперь действительно можно было убедиться в том, что представлялось вероятным a priori: каждому роду пищи отвечает своя деятельность желез, свои свойства реактивов.

Начнем с желудка. Исследования на собаках с изолированным желудком показали (д-р Хижин), что смешанной пище, молоку, хлебу, мясу и т. д. отвечает всякий раз совершенно особенная работа желудочных желез в отношении качества всего сока, его количества, отделения и продолжительности всего отделительного процесса. Переберем эти элементы по порядку.

Самой высокой переваривающей силой обладает сок, вытекающий на хлеб; будем называть его для краткости хлебным, как и остальные соответственно. Для него в среднем у доктора Хижина значится 6,64 мм. Мясной пище отвечает сок 3,99 мм. Наконец, молочная еда дает сок переваривающей силы 3,26 мм. Воспользуемся правилом Шюца и Борисова для точного сравнения состава всех этих соков. Квадрат хлебного сока – 44, квадрат мясного – 16 и квадрат молочного – 11; следовательно, хлебный сок содержит в себе в 4 раза более фермента, чем молочный, он вчетверо концентрированнее молочного.

Хорошей иллюстрацией к сказанному могут служить следующие опыты (из работы д-ра Хижина).



Влияние разного рода пищи на переваривающую силу сока совершенно очевидно. Однако, чтобы исключить мысль, что на результат мог иметь влияние порядок введения пищи, приводим другой опыт.



Как переваривающая сила, колеблется и кислотность[10] по родам пищи, являясь самой высокой при мясе (0,56 %) и самой низкой при хлебе (0,46 %). Так же различаются количества сока и сроки продолжительности отделения в случае того или другого сорта еды, возьмем ли мы равные весовые количества этих сортов – равные ли по твердому остатку или, что еще поучительнее, равные по азоту, так как мы имели перед собой действие желудочного сока только на белки. Соответственно этому оказываются различными средние часовые количества сока, получаемые делением всей массы сока на число часов отделения, т. е. среднее часовое напряжение желез. На равные весовые количества всего больше выливается сока на мясо и всего меньше на молоко, на эквивалентные по азоту – всего больше на хлеб и всего меньше на мясо; часовое напряжение желез почти одинаково у мяса и молока и резко меньше у хлеба, т. е. по продолжительности обработки выделяется из других сортов еды хлеб, сильно затягивая отделение.

Характерность работы желез при каждом особом сорте еды не исчерпывается приведенными разницами, а дает себя знать выразительными особенностями в ходе отделения, как и в часовых колебаниях качеств сока. На этот раз я представляю только по одному примеру для каждого сорта с просьбою верить, что и здесь точность повторения не меньше, чем в ранее приведенных случаях (табл. 4).

То же представляю в виде кривых (рис. 6 и 7).

Перед нами в высшей степени резкие и любопытные факты: при каждой еде как количество, так и качество сока от часа к часу изменяются совершенно своеобразно. При мясе максимум отделения приходится то на первый, то на второй час, причем эти часы вообще очень мало разнятся друг от друга в отношении количества; у хлеба – всегда и резкий максимум падает на первый час, при молоке – на второй и даже на третий.

У мясного сока высшая концентрация принадлежит первой часовой порции, у хлебного – порции второго или третьего часа, а у молочного – самой последней часовой порции. Так же характерно положение минимумов, как и вообще весь ход.


Таблица 4

Количество и качество сока при разных сортах еды по средним цифрам доктора Хижина (200 г мяса, 200 г хлеба, 600 куб. см молока)


Приведенные факты, как мне кажется, чрезвычайно подкрепляют наше раннее заключение о серьезном значении колебаний отделительной работы в течение отделительного периода: если каждому роду пищи отвечает свой собственный ход отделения, то, значит, он имеет определенное значение и известную важность.


Рис. 6. Колебания часовых количеств желудочного сока при еде мяса (а), хлеба (b) и молока (с)


Рис. 7. Колебания переваривающей (белки) способности часовых порций желудочного сока при еде мяса (а), хлеба (b) и молока (с). Единицей меры по вертикальной линии служит 1 куб. см сока


Мы познакомились теперь с очень многими колебаниями железистой работы в различных случаях. Их законность свидетельствует об их важности. Является интересным и необходимым понять смысл каждого колебания. Такое понимание способствовало бы значительному объединению многочисленных фактов, теперь стоящих более или менее особняком и, может быть, неприятно загромождающих ваше внимание и память. Я, однако, при передаче их отнюдь не имел в виду запоминание всех этих сложных отношений, для чего, конечно, требуются многократное повторение и изучение предмета. Мне нужно было только обосновать в вас убеждение, что работа желез крайне эластична, вместе с тем характерна, точна и вполне целесообразна. К сожалению, что касается последнего пункта – это почти непочатый угол для исследования; убеждение в целесообразности колебаний работы желез в настоящее время может основываться главным образом на общих соображениях и лишь частью – на отдельных более или менее ясных и бесспорных случаях ее. Определим количество фермента, истрачиваемого желудком на эквивалентные по N количества разных сортов еды. На хлеб идет 1600 единиц фермента, на мясо – 430 и на молоко – 340. Я получаю эти цифры следующим образом. Для мяса и молока у доктора Хижина есть готовые числа: 100 г мяса эквивалентны по N 600 куб. см молока и 250 г хлеба. Опыта с таким количеством хлеба у доктора Хижина нет, но на основании правила о пропорциональности между количеством пищи и соком легко рассчитать нужное число. Таким образом, получаются следующие числа:



Беря квадраты миллиметров, я имею соответственно 38 для хлеба, 16 для мяса и 10 для молока.

Эти числа дают возможность сравнивать содержание фермента в одинаковом объеме сока. Для того чтобы рассчитать все количество фермента при всех сортах еды, нужно принять во внимание разные количества сока; ради этого приведенные квадраты относятся к одному куб. сантиметру как к единице и множатся соответственно на число куб. сантиметров каждого сока; тогда оказываются вышеприведенные цифры: 1600, 430 и 340, а это значит, что на то же количество хлебного белка издерживается желудком пепсина почти в пять раз больше, чем на белок молока, а на мясной – на 25 % больше, чем на молочный. Этот ряд ферментных затрат на разные белки вполне совпадает с результатами физиолого-химического исследования перевариваемости всех этих белков. При сравнении работы желудочных желез при разных сортах еды нельзя не заметить целесообразности и в другом отношении. Надобность в большом количестве фермента для растительного белка покрывается не столько количеством сока, сколько чрезвычайно увеличенной концентрацией хлебного сока сравнительно с другими соками. Следовательно, можно думать, что надобилось только большое количество фермента и являлось излишним, даже вредным большое количество кислоты. Что действительно в желудке избегался избыток кислоты, на это указывает и другая особенность хлебного отделения. В целом только незначительно большая масса хлебного сока, сравнительно с молочным, распределяется, однако, на гораздо большее время, так что средняя часовая величина хлебного отделения, как сказано выше, в полтора раза меньше, чем при молоке и мясе. Таким образом, при переваривании хлеба в желудке во весь отделительный период содержится относительно небольшое количество соляной кислоты. Эти факты опять хорошо совпадают с физиолого-химическими наблюдениями, что избыток кислоты мешает перевариванию крахмала, который в хлебе в таком большом количестве сопровождает белок. И из клинических наблюдений мы знаем, что при hyperaciditas, когда мясо переваривается очень хорошо, масса хлебного крахмала проходит пищеварительный канал неусвоенной.

Может быть, в интересах той же крахмальной обработки существует явление, о котором уже упоминалось ранее несколько раз, но которое оставалось до сих пор без всякого толкования, – это длинный период, по крайней мере в 5 минут, всегда наблюдающийся между кормлением животного и началом истечения сока, делается ли наблюдение на целом желудке, как при мнимом кормлении, или на нашем маленьком уединенном желудочке. Этот, так сказать, латентный период, не бывая меньше 4 1/2–5 минут, в другую сторону представляется довольно колеблющимся, чаще всего до 10 минут. Что значит он? Отнести его на какие-нибудь внешние условия, например вроде наполнения желез до края, увлажнения всей поверхности желудка до образования потоков по направлению к фистульному отверстию, нет достаточных оснований, потому что он строго сохраняется при несомненно наполненных железах и при смоченной соком стенке желудка. Представить себе почему-либо неспособность желудочных желез скорее реагировать на раздражение, чем срок времени в 5 минут, было бы странностью. Остается одно – признать в этом какую-то особенную цель. Может быть, эти 5–10 минут рассчитаны на беспрепятственное развитие действия слюнного крахмального фермента. Конечно, такое объяснение не может претендовать на большую убедительность, раз дело идет о факте, еще не подпавшем систематическому научному анализу.

 

Тем охотнее перехожу я к работе поджелудочной железы, что здесь факт целесообразности ее, по самой сущности наблюдаемых явлений, стоит вне всяких споров и сомнений. Вот таблица (5) опытов с данными количества и содержания ферментов, при тех же сортах еды (из работы д-ра Вальтера).


Таблица 5


Под концентрацией сока разумеется квадрат числа миллиметров растворенных цилиндриков или куб. сантиметров титрованной щелочи, под абсолютным числом ферментных единиц – произведение квадрата на число куб. сантиметров выделенного сока. Сравнению подлежат опять эквивалентные количества по азоту. Мы видим, что у каждого сорта еды свое количество сока, резко разнящееся от других. Но поразительно отношение ферментов. Для каждой еды свой сок по ферментам: по белковому ферменту самый сильный – молочный сок, затем идут хлебный и мясной; по крахмальному – самый сильный хлебный и затем молочный и мясной, и по жировому ферменту – очень слабый хлебный и очень сильный молочный, мясной занимает среднее положение. В последних двух случаях приспособление очевидно без дальнейших расследований; для еды с крахмалом усилен крахмальный фермент, для еды с жиром – жировой фермент. Это видно уже в колебаниях концентрации, но в особенности – в абсолютном количестве ферментов. Некоторое недоумение может вызвать сначала только первый случай, т. е. изменение белкового фермента по родам еды. При желудочной работе мы видели совершенно обратное: на молоко выливался самый слабый раствор фермента, когда здесь – самый сильный. Однако, принимая во внимание массу сока, мы находим и здесь, что на одно и то же количество белка: хлебного – выливается 1978 единиц белкового фермента, мясного – 1502 и молочного – только 1085 единиц, т. е. и в случае панкреатического сока растительный белок требует на себя фермента всего больше, а молочный – всего меньше. Разница с желудочными железами оказывается, следовательно, только в том, что при них большее количество фермента доставляется на хлеб в концентрированном растворе, а при поджелудочной железе – в более разжиженном. Как кажется, факт этот придает лишний вес нашему раннему предположению, что в желудке при переваривании хлеба нарочито избегалось накопление большого количества кислоты. Во всяком случае, только что приведенное отношение чрезвычайно усиливает интерес к сложности изучаемого нами механизма; очевидно, почва кишит нерешенными и важными вопросами.

Как и при желудочных железах, работа pancreas, кроме количества и качества сока, характеризуется при всяком сорте еды и ходом ее. Прилагаю числа и соответствующие кривые из работы доктора Вальтера (рис. 8).



Ввиду всех приведенных фактов и зная на других тканях организма способность более или менее стойко изменяться под долгим влиянием усиленной работы или бездействия, можно было то же самое полагать и при наших железах. В самом деле, направленное на этот пункт исследование поджелудочной железы увенчалось полным успехом. При продолжительном изменении характера еды ферментный состав сока меняется постепенно – день ото дня – все больше и больше. Если, например, исходить из свойств панкреатического сока собаки, несколько недель питавшейся только хлебом и молоком, и затем перевести ее на мясную еду, т. е. на еду с большим содержанием белковых веществ при почти полном отсутствии крахмалистых, то наблюдается постепенное усиление способности переваривать белки.


Таблица 6

Колебания ферментных способностей в часовых порциях поджелудочного сока при еде 100 г мяса, 250 г хлеба и 600 куб. см молока


Эта способность все растет и растет с продолжением кормления мясом; способность же переваривать крахмал относится совершенно обратно, т. е. постепенно слабеет. Вот опыт из работы доктора Васильева.

Собака ежедневно получает две бутылки молока и фунт белого хлеба в продолжение полутора месяцев. Часовые порции сока за первые 6 часов после еды дают следующие цифры: для белкового фермента (в миллиметрах) – 0,0, 0,0, 0,25, 0,25, 0,25, 0,25; для крахмального фермента (в миллиграммах сахара) – 8, 13, 10, 16, 18, 15. Затем эта собака переводится на мясо – полфунта в день. Уже через 3 дня замечается повышение силы белкового фермента и понижение крахмального. На 23-й день мясной диеты эти величины, постепенно изменяясь в указанном смысле, представляются в следующем виде: для белкового фермента (опять же в порциях первых шести часов после еды) – 1,5, 1,0, 1,5, 3,5, 3,5, 3,0; для крахмального фермента соответственно – 4, 3, 3, 7, 4, 6. При этом нужно заметить, что действие сока на крахмал в последнем опыте продолжалось в 2 раза дольше, чем в первом.

Хотя результат опытов совершенно отчетлив, тем не менее против него было возможно возражение, что та или другая выработка ферментов могла переместиться с одних часов отделительного периода на другие. Поэтому решено было, ради абсолютной точности результатов, сравнить ферментные способности суточных масс сока. Вот трудный опыт, исполненный доктором Яблонским. Собака, долго питавшаяся мясом и достигшая большой силы в переваривании белков панкреатическим соком, затем переводится на молочно-хлебную диету, причем белковый фермент начинает постепенно убывать, судя по порциям первых шести часов. На 30-й день последней диеты ставится опыт собирания сока за целые сутки. Переваривающая сила этого сока по отношению к белкам выражается (по Метту) 4 мм; 10 дней спустя опыт повторяется, и теперь переваривающая сила суточной массы представляется только 2,25 мм. Третий суточный опыт ставится еще на 12 дней позже и дает переваривание в 1,25 мм. Наконец, при четвертом опыте, поставленном еще спустя 24 дня, переваривающая сила стала нулем (по Метту). Крахмальный фермент, сперва правильно увеличиваясь, затем представлял неопределенные колебания, однако с наклонностью к понижению. Последний пункт требует, однако, новой проверки. Результат опыта, что касается изменения белкового фермента, не оставляет ничего большего желать. Конечно, важно так же точно проследить изменения и остальных двух ферментов. Более или менее стойкое и с продолжением данного пищевого режима все усиливающееся известное состояние железы можно было изменить на одной и той же собаке и по нескольку раз, в ту или другую сторону, меняя пищевые режимы. Это обстоятельство совершенно исключало подозрение, что в наших опытах имелось дело с каким-нибудь самопроизвольным и бесповоротным изменением железы вследствие ли факта операции или какой-либо другой патологической причины.

Если еда так резко и сильно действует на химический характер железы, то могло быть, что при постоянных природных обстоятельствах или под влиянием продолжительных (всю жизнь длящихся) домашних правил жизни (как это часто, например, практикуется на различных породах собак) должны были выработаться прочные определенные типы панкреатической железы. Наш экспериментальный материал, как нам кажется, действительно дает нам в этом отношении некоторые указания. При совершенно тождественных условиях питания у нас в лаборатории панкреатический сок разных собак часто очень разнится в отношении содержания ферментов. Соответственно этому и переход от одного режима к другому у одних собак дает себя знать очень быстро в свойствах сока, между тем как у других изменение свойств сока наступает и развивается очень медленно. Кроме того, случалось замечать, что в последних случаях резкие переходы от одной еды к другой вели иногда к серьезному заболеванию животных.

Что касается до желудочных желез, то здесь вопрос о хронических изменениях их ферментной способности остается пока открытым. В нашей лаборатории получение чистого желудочного сока путем мнимого кормления производилось на массе собак (их надо считать десятками), и, однако, никогда резко не бросалась в глаза очень большая и постоянная разница в переваривающей силе сока разных собак. Доктор Самойлов (ненапечатанные опыты), ради разъяснения этого вопроса, наблюдал трех гастро- и эзофаготомированных собак, которые после многократного испытания путем мнимого кормления были посажены на различные пищевые режимы. После долгого времени никакого резкого указания на изменение состава сока, добываемого тем же путем мнимого кормления, не оказалось. Как относиться к этому результату? Неблагоприятен ли был способ суждения о ферментной способности желудочных желез или в самом деле на этом пункте желудочные железы существенно отличаются от поджелудочной железы? Конечно, возможно, что панкреатическая железа в значительной степени играет роль дополнительной – резервной железы, которая, смотря по бремени, лежащему на пищеварительном канале, в силу своей специальной натуры, в особенности способна то усиливать, то ослаблять свою работу, между тем как желудочные железы, будучи первой сильной пищеварительной инстанцией, обязаны поэтому постоянно работать в максимальном размере их сил. Только в последнее время в нашей лаборатории (д-ром Лобасовым) получается факт, правда, не простой для толкования, но как будто говорящий за стойкое изменение и желудочных желез при том или другом пищевом продолжительном режиме. Мы имеем собаку, у которой уединен кусок дна желудка по способу Гейденгайна, т. е. с перерезкой блуждающих нервов. Нужно сказать, что у таких собак, раз они выживают более или менее продолжительное время, отделение желудочного сока мало-помалу делается очень незначительным (наблюдение нашей лаборатории). На такой собаке было замечено следующее отношение. Когда собака надолго была посажена на обильную мясную пищу, у нее всякий раз затем, при испытании одним и тем же приемом, т. е. одной и той же едой в одном и том же количестве, достигалось гораздо более обильное отделение, чем когда животное питалось иначе, например хлебом с молоком или овсянкой. Ввиду, однако, очевидного нарушения нормальных условий работы желез у оперированных так животных нельзя уверенно опираться на описанный факт.

10Кислотность определялась титрованием сока щелочью и выражалась в процентах HCl на всю массу сока.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»