Cуперкомпьютеры: администрирование

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Что означает «супер» для администратора суперкомпьютера

На первый взгляд, большой кластер ничем не отличается от множества офисных компьютеров, объединённых локальной сетью, и нескольких стандартных серверов – дискового хранилища и т. п. На самом деле отличия есть, и очень важные. Начнём с оборудования – для кластера требования намного выше. Если в локальной сети можно временно заменить сломанный коммутатор на более простой или даже на несколько дней нарушить связность сети (ну, придётся отчёты печатать на втором этаже, потерпите), то в кластере это недопустимо. Заменив IB-коммутатор на GigabitEthernet или узел с 8ГБ памяти на узел с 4ГБ, мы получим неработающий кластер или работающий так, что все пользователи завалят нас жалобами.

Настоятельно рекомендуем иметь ЗИП (аварийный запас) всех ключевых компонент оборудования, если у них нет аппаратного дублирования, и сервисный договор о замене оборудования в чётко оговорённый срок.

Ещё вспомним о том, что кластер, в отличие от офисных компьютеров, упакован на нескольких квадратных метрах (большой – на нескольких десятках, реже – сотнях). Поэтому требования к охлаждению для него намного выше, тут открытым окном или бытовым кондиционером не обойтись. Электричества на суперкомпьютер уходит гораздо больше, чем на много офисных ПК, и бытовых UPS тут тоже не хватит, да и в бытовую розетку и даже в десяток его не включишь.

В современных кластерах вычислительная часть может занимать меньше четверти от всей площади установки, всё остальное занимает климатическое и энергетическое оборудование. А контроль и управление этим оборудованием (но не обслуживание) – тоже часть работы администратора. Более того, в отличие от офиса, если вычислительный узел, кондиционер или UPS вышли из строя, то об этом нельзя узнать от прибежавшего сотрудника, у которого «горит отчёт, а монитор не включается». Хуже всего, если об этом придётся узнать от пользователей, у которых программа перестала работать как надо или запускается два раза из трёх. Эту задачу решает мониторинг всего и вся. Очень важно знать как можно больше о состоянии кластера. На этом отличия не заканчиваются. Одно из самых важных связано с режимом работы. В офисе нагрузка на компьютеры не высока: большая мощность от них требуется несколько минут в день, чтобы отобразить большой документ или проиграть видеоролик новой рекламы продукта. 99% времени эти компьютеры ждут клика мышкой или нажатия на клавишу. В кластере всё принципиально иначе, его нормальный режим работы – 80–100% загрузки каждого узла постоянно.

В офисе даже пиковая нагрузка одного или двух компьютеров не будет заметна на общем фоне. Но каждый опытный администратор знает, что такое «все компьютеры схватили какой-то вирус» – нагрузка на сеть возрастает в сотни раз, сетевое хранилище не справляется с потоком запросов, всё начинает жутко «тормозить»… А в кластере ситуация, когда все узлы, занятые под одно задание, начинают обмениваться данными или писать промежуточные данные на сетевой диск – это не вирус, а совершенно нормальная ситуация. Особый тип пиковой нагрузки – включение. В офисе всё происходит само собой: утром все приходят, кто-то пораньше, кто-то попозже, включают компьютеры, подключают ноутбуки… Для суперкомпьютера же процедура включения означает резкое увеличение энергопотребления на десятки, а то и тысячи киловатт, дружное обращение вычислительных узлов к дисковому хранилищу, сервисным серверам. Если включить всё разом, то, скорее всего, установка просто сгорит. И даже «плавное» включение узлов одного за одним с интервалом в несколько секунд может привести к сетевым конфликтам, перегрузке какого-то сервиса запросами.

Для примера: в больших дисковых массивах (из нескольких стоек) полки и диски запускаются поочерёдно в определённой последовательности не только из-за больших пусковых токов, а ещё и для того, чтобы не раскачивалась стойка от раскручивающихся дисков. Другой пример: серверы организованы в коридор – стойки стоят напротив друг друга и серверы выдувают горячий воздух внутрь получившегося коридора, тогда и включать их надо пáрами, чтобы не перегреть ещё не включённые серверы.

Многое зависит от того, как спроектирован конкретный суперкомпьютер, поэтому хорошо изучите его структуру и процедуру старта. Конечно, эти и другие проблемы касаются и больших офисов, но в кластере они возрастают многократно. Все эти проблемы решаемы с той или иной степенью эффективности, но нередко методы их решения отличаются от «офисных». Во многом всё зависит от оборудования – при планировании суперкомпьютера очень важно помнить о пиковых нагрузках. Тут они – серая повседневность, поэтому изначально надо закладывать решения, позволяющие их выдерживать.

Кроме чисто аппаратных решений важны и программные: если один ключевой сервис поставить даже на супермощный сервер, то он всё равно может не справиться с нагрузкой, и, возможно, надо подумать о дублировании или разделении нагрузки. Если же при планировании по какой-то причине не удалось всё учесть и под нашей опекой оказался кластер с «бутылочным горлышком», то нужно суметь найти способ расширить или совсем ликвидировать это горлышко, например, заменив часть оборудования и/или программного обеспечения, но это обычно непросто.

Централизованное управление вычислительным комплексом

Как мы увидим далее, аспектов управления вычислительным комплексом масштаба вычислительного кластера очень много. Тут и развёртывание системы, и обновление ПО, и контроль учётных записей, удалённого доступа, управление доступом и заданиями, мониторинг, резервное копирование и многое другое. Каждая из этих задач по отдельности решается, а как – мы покажем в этой книге. Однако объём действий, совершаемый администратором при массовых операциях, таких, как заведение групп пользователей с присвоением им специфических прав, изменения в настройках сетевых устройств или узлов, становится весьма внушительным.

Тут на помощь вам придут знания скриптовых языков – большинство таких действий автоматизируется скриптами. Но, к сожалению, не все действия можно выполнить набором скриптов. В нелёгкие будни системный администратор большого вычислительного комплекса всё чаще задумывается об удобной «консоли», в которой можно сделать всё, что требуется, не запуская лишних программ, скриптов, не копируя промежуточных файлов и текста с экрана терминала. Особенно часто такие мысли возникают при виде продуктов типа HP OpenView или Zenoss. «Вот она – панацея!» – так и хочется воскликнуть. И правда, такие продукты нацелены на решение очень похожих задач. Они сами инвентаризируют оборудование, ведут учёт пользователей и ПО, делают массу автоматизированных действий… Более того, их действительно можно (а если есть возможность, то и нужно) приспособить для решения части ваших задач.

Увы, лишь части. Подобные продукты, как коммерческие, так и свободные, нацелены именно на похожие, пересекающиеся с нашими, но всё же другие задачи. Заставить их делать то, чего они не умеют, но что нужно нам, иногда можно, но это требует колоссальных затрат – людских, финансовых, времени… А как только конфигурация вашего суперкомпьютера поменяется, всё это придётся делать заново. По нашему личному опыту и опыту многих администраторов суперкомпьютеров, с которыми мы общались, универсальных решений нет. К сожалению, создание таких инструментов востребовано только узким кругом администраторов, при этом оно дорого в разработке и поддержке. Именно поэтому мы хотим обратить ваше внимание на важность системного подхода ко всем учётным и организационным действиям с вычислительным комплексом. Однако это не значит, что нужно выбирать как можно более интегрированные решения. Это значит, что все действия должны быть хорошо описаны – не для того, чтобы не забыть, а для того, чтобы видеть картину в целом и в изменившихся условиях быстро адаптировать к ним устоявшиеся процессы.

Старайтесь использовать гибкие и расширяемые инструменты. И не забывайте учиться новому, применять адекватные (а не только самые модные) технологии к решению всего комплекса задач администрирования суперкомпьютера!

Краткое резюме

Суперкомпьютер очень похож на «много-много обычных серверов», но в то же время особенностей работы с ним намного больше, чем с множеством серверов. Очень многие серверные технологии тут используются для решения стандартных задач, но не для всех они применимы. Кроме того, есть множество специфичных задач и технологий, применяемых только в области супервычислений.

Ключевые слова для поиска

HPC, beowulf, supercomputer.

Глава 2. Как устроен суперкомпьютер

Рассмотрим «анатомию» вычислительного кластера: из каких компонент он состоит? В зависимости от размера и архитектуры конкретного кластера некоторые компоненты могут объединяться. Далее мы часто будем писать «узел» – это синоним слова «сервер», но в HPC так принято.

Итак, обязательная часть любого кластера – вычислительные узлы, или так называемое счётное поле. Это серверы, на которых будут считаться задания. Кроме вычислительных узлов должен быть как минимум один управляющий узел, в больших системах к нему добавляются дополнительные служебные узлы, их может быть несколько десятков. Для эффективной совместной работы вычислительных узлов необходимы сети:

коммуникационная, по которой происходит обмен данными вычислительных заданий;

управляющая, по которой происходит удалённый доступ на узлы, запуск заданий и т. п.;

• одна или несколько служебных – для доступа к сетевой файловой системе, управления через протоколы IPMI или iKVM, дополнительной синхронизации (прерываний, тактовой частоты, барьеров и т. п.) и, возможно, другие.

Обязательный компонент современного вычислительного кластера – сетевая файловая система.

Для работы всего комплекса обязательно необходимо наличие инфраструктуры: систем энергообеспечения, климатических систем. Для большой установки они могут занимать в несколько раз больше места, чем вычислительные узлы. Как правило, обслуживание инфраструктуры не входит в обязанности администратора, но он должен по возможности осуществлять контроль её состояния.

 

Управляющий узел

Все узлы любого кластера делятся на вычислительные и служебные. Один служебный узел присутствует всегда – это управляющий узел. Именно с него выполняется управление всеми подсистемами (или с него выполняется вход в управление ими), как правило, на него же попадают пользователи по ssh. В небольших кластерах он может совмещать функции всех служебных серверов.

Вычислительный узел

«Рабочая лошадка» кластера – счётное поле. Как правило, тут все узлы одинаковой конфигурации, но иногда в поле могут входить узлы двух и более конфигураций. Чем однороднее состав вычислительных узлов, тем проще ими управлять, тем проще работать планировщику. Создавать смешанные конфигурации стоит только в тех случаях, когда вы уверены, что все(!) они будут активно использоваться заданиями.

Аппаратная начинка вычислительного узла полностью определяется характером заданий, которые будут решаться на кластере, но всегда нужно стараться сбалансировать состав «железа», чтобы не возникло узких мест, например, таких, как большое число ядер при узком канале в память, недостаточная ширина канала в вычислительную сеть и т. п. Наличие жёсткого диска имеет как плюсы, так и минусы. Минусы – дополнительное место и энергопотребление с тепловыделением, а также высокая вероятность выхода из строя. В блейд-конфигурациях всё это особенно актуально. Плюсы – возможность установить локальную копию ОС, что сильно упрощает процедуру включения, ускоряет загрузку системных библиотек (а значит, и старт программ), а также возможность добавить swap-пространство и локальный каталог /tmp. Это значительно повышает эффективность работы памяти.

При установке локальной копии ОС следует быть очень осторожным при обновлениях ПО и локальном хранении учётных данных. Для повышения эффективности конфигурация ПО должна быть максимально облегчена: чем меньше лишних сервисов, тем лучше.

На вычислительном узле вполне можно отказаться от таких сервисов, как почта (можно отправлять сообщения через головной узел), cron (самые важные задания можно выполнять по ssh также с головного узла), udev, acpid и т. п. Оставьте только самые необходимые, а вместо udev, если возможно, используйте заранее созданные файлы устройств – они всё равно не будут меняться со временем. Самые важные сервисы для вычислительного узла – sshd и клиент сетевой файловой системы. Очень желательно настроить мониторинг работы узла. В некоторых современных дистрибутивах отключить udev невозможно: от него зависят важные сервисы (systemd, например). В этом случае оставьте его, не пытайтесь «обмануть» систему. Как правило, все вычислительные узлы логически объединяются в разделы (или очереди) в рамках системы управления заданиями. Если в поле есть узлы разных конфигураций, то удобно создать разделы для каждой конфигурации отдельно. Иногда бывает полезным объединить несколько вычислительных узлов в один раздел для запуска небольших тестовых заданий (тестовая очередь), при этом полезно ограничить время счёта таких тестовых заданий (например, 15–20 минут).

Служебные узлы

Все узлы, не включённые в счётное поле, – служебные. Совмещать функции вычислительного и служебного узла (например, NFS-сервера) крайне не рекомендуется, так как это наверняка приведёт к разбалансировке работы заданий и повышению вероятности отказа сервиса. Существует несколько ролей, которые выполняют служебные узлы, но часто один сервер выполняет несколько ролей, а то и все сразу.

Рассмотрим типичные роли. В больших вычислительных комплексах не всегда бывает удобно нагружать управляющие узлы пользовательскими и служебными системными процессами. Например, если установлены вычислительные узлы с разными версиями операционных систем, то совсем неудобно производить сборку пользовательских программ на управляющем узле, логичнее выделить несколько узлов для компиляции программ (узлы компиляции).

Для защиты от несанкционированного доступа к системным службам и чувствительным данным (например, база данных паролей пользователей) обычно функции управляющих узлов разносят на две группы: узлы доступа и узлы управления. Узлы доступа предназначены для входа пользователей и их дальнейшей работы в системе, а узлы управления – для работы системы управления заданиями.

Практически в любом кластере есть сетевая файловая система, а значит, и сервер для неё, а нередко – целая ферма, если файловая система распределённая. Довольно распространённым служебным узлом является лицензионный сервер, на котором располагаются специальные службы, отвечающие за лицензирование коммерческих программ и утилит. Например, может использоваться сервер лицензий FlexLM для нескольких коммерческих пакетов. Расположение лицензионных служб на отдельной машине оправдано как с точки зрения безопасности (защита от кражи лицензионных файлов), так и с точки зрения повышения отказоустойчивости комплекса в целом. Обязательно запишите MAC-адрес этого сервера, при его внезапной замене для большинства программ будет достаточно установить на новом сервере старый MAC-адрес. И не забудьте запросить перевыпуск лицензии для нового сервера, конечно, с его настоящим MAC-адресом.

В современных вычислительных комплексах довольно часто встречаются узлы подготовки входных и обработки выходных данных (так называемые узлы пред/постобработки, от англ. pre- и postprocessing). Такие узлы отличаются бóльшим объёмом оперативной памяти, чем на остальных узлах (256 Гбайт и более), что крайне важно для подготовки больши́х заданий и обработки результатов расчётов.

Часто полезными являются так называемые узлы визуализации. Обычно это выделенные серверы со специальными графическими картами для обработки визуальной информации и выдачи готовой картинки через сеть удалённому пользователю. Это бывает удобным, в частности, для удалённой подготовки заданий к расчёту (например, для визуализации сеток и иных входных данных). Узлы визуализации могут играть роль узлов пре/постобработки.

Для организации распределённого хранилища данных могут быть использованы узлы хранения данных. К каждому такому узлу подключается своё собственное дисковое хранилище, а все узлы хранения объединяются в единую сеть с общим доступом к файловой системе со всех узлов (подробнее об этом – в следующем разделе).

Среди служебных узлов также могут быть выделенные узлы:

• резервного копирования;

• удалённой загрузки;

• развёртывания ПО;

• авторизации и аутентификации;

• удалённого журналирования;

• сбора и обработки данных мониторинга;

• сбора и отображения статистики и состояния оборудования;

• служебных баз данных;

• и др.

Всё зависит от того, какие нужды у пользователей и администраторов вычислительного комплекса.

Сетевое оборудование

Компьютерные сети позволяют организовать взаимодействия компьютеров между собой. Для их построения применяется специальное оборудование: это сетевые карты и коммутаторы. В кластерах, как правило, имеются как минимум две сети. Одна, называемая служебной, выполняет те же функции, что и обычная локальная компьютерная сеть, другая обеспечивает обмен данными между вычислительными заданиями на разных узлах.

Наиболее серьёзные требования предъявляются к коммуникационной сети. Для характеристик возможностей сетей используются два основных параметра: пропускная способность и латентность.

Пропускная способность характеризует, какой наибольший объём информации может быть передан в единицу времени (чаще всего это секунда). Производители сетевого оборудования нередко указывают пиковую пропускную способность. В реальных приложениях, как правило, наблюдается скорость в 1,5‒2 раза ниже пиковой. Термин латентность (задержка) – это чистое время на передачу сообщения нулевой длины. Оно в первую очередь зависит от времени, затрачиваемого сетевыми устройствами и системой на подготовку к передаче и получению информации.

Пропускная способность и латентность позволяют оценить, насколько эффективно будут считаться задания на кластере. Если задание требует частого обмена данными между узлами, то использование сетевого оборудования с большой латентностью приведёт к тому, что бóльшая часть времени будет тратиться не на передачу данных, а на подготовку, а узлы будут простаивать. При малой пропускной способности обмен данными между узлами не будет успевать за скоростью счёта задания, что тоже скажется отрицательно на производительности: узлы будут тратить много времени на ожидание данных по сети.

Латентность и пропускная способность сети в первую очередь определяются используемой технологией передачи данных. Наиболее широко распространённой сетевой технологией является Ethernet, но её параметры удовлетворяют только требованиям, предъявляемым для организации служебной сети кластера, для сетей обмена данными используются менее известные, но более высокоскоростные сети.

Таблица 1: некоторые характеристики сетевых технологий


В таблице 1 приведены наиболее применяемые в кластерах сетевые технологии и их типичные характеристики. При проектировании сетей для вычислительных кластеров следует рассмотреть ещё один немаловажный вопрос – цену. Если не вдаваться в детали, то каждая сетевая карта высокоскоростной сети стоит около 1 000$, а цена коммуникатора может колебаться от 10 000$ до 1 000 000$ и выше. На сегодняшний день наиболее популярной технологией при построении кластеров для создания сетей обмена данными является технология InfiniBand. Причины её популярности связаны с хорошим соотношением между ценой и возможностями оборудования, доступностью программного обеспечения.

Некоторые сети могут использовать лишь один вариант топологии (способа коммутации узлов сети). Например, GigabitEthernet поддерживает только топологию «звезда», но так как в реальных приложениях она используется только совместно с TCP/IP, то допускается объединять несколько «звёзд» каналами, настроив маршрутизацию.

InfiniBand позволяет использовать практически любые топологии, которые поддерживаются установленным Subnet Manager. Стандартные реализации Subnet Manager поддерживают топологии «звезда», «дерево», «толстое дерево», «гиперкуб», но появляются и новые реализации. За счёт того, что в InfiniBand допускаются множественные маршруты, для средних конфигураций неплохо подходит топология «толстое дерево», которая хорошо использует дублирующиеся каналы. Топология – важный фактор эффективности сети. Наличие «узких мест» в топологии может свести на нет высокую скорость сети. Например, два GigabitEthernet-коммутатора, соединённых одним каналом, – явно не лучшее решение. А если соединять их несколькими каналами, то необходимо позаботиться о том, чтобы они объединялись на уровне коммутатора. Такое объединение поддерживается многими видами сетевого оборудования, существуют стандартные технологии, например EtherChannel, bonding, trunking. Важно заранее убедиться, что все стороны, участвующие в таком объединении, используют одинаковые стандарты (например, bonding может быть реализован по-разному у разных производителей).

Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»