Эпигенетика. Управляй своими генами

Текст
Из серии: Медик.ру
3
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Эпигенетика. Управляй своими генами
Эпигенетика. Управляй своими генами
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 848  678,40 
Эпигенетика. Управляй своими генами
Эпигенетика. Управляй своими генами
Аудиокнига
Читает Игорь Гмыза
449 
Подробнее
Шрифт:Меньше АаБольше Аа

1.4. Загадки в эпигенетике

Здесь мы идем по очень «скользкой» дорожке, того гляди и до оправдания гомеопатии дойдем, а может, и еще чего покруче…

И снова обращаемся к статье Вайсермана: «Например, недавно открытый bystander effect ("эффект свидетеля"). Вкратце его суть такова. Когда ученые облучают культуру клеток, у них возникают реакции широкого спектра, от хромосомных аберраций до радиоадаптивных реакций (способности выдерживать большие дозы облучения). Но если мы удалим все облученные клетки и в оставшуюся питательную среду перенесем другие, необлученные, у них проявятся те же реакции, хотя их никто не облучал.

Предполагается, что облученные клетки выделяют в среду некие эпигенетические сигнальные факторы, которые и вызывают в необлученных клетках аналогичные изменения. Какова природа этих факторов – пока никто не знает…»

И еще добавим к вышесказанному об этих экспериментах (подобные проводились после чернобыльской аварии и описаны П.М. Морозиком и С.Б. Мельновым, обзор в журнале «Медицинские аспекты чернобыльской катастрофы»). Если просто облучать питательную среду и помещать в нее культуру необлученных клеток, то необлученные клетки не покажут никаких реакций.

1.5. Молекулярные механизмы эпигенетики

Зачем обычному человеку читать о молекулярных механизмах? Пусть ученые читают, так как они знают этот особый язык науки и применяют его на конференциях, повергая в благоговейный ужас простых смертных, не приближенных, так сказать… Мы и сами периодически били себя и друг друга по рукам (наверно, как и Ильф с Петровым, создавая невероятное произведение «12 стульев»), чтобы сдерживать себя и не писа́ть научными «иероглифами». И мы твердо уверены, что вы, наши читатели, ушли значительно вверх по эволюционно-интеллектуальной лестнице от Эллочки-людоедки, которая знала несколько слов. И хотя не про эпигенетику, но не смогли не процитировать: «Словарь Вильяма Шекспира, по подсчету исследователей, составляет 12000 слов. Словарь негра из людоедского племени "Мумбо-Юмбо" составляет 300 слов. Эллочка Щукина легко и свободно обходилась тридцатью»[5].

Мы постарались, чтобы ваш эпигенетический словарь был не как у Шекспира, но и не как у Эллочки, а где-то примерно на уровне Мумба-Юмбо (шутка, на самом деле не считали количество терминов).

Дело в том, что в современном представлении эпигенетика получила немного другое определение, больше связанное с молекулярными процессами, которые лежат в ее основе. Так, один из источников определяет «эпигенетический признак как устойчивый наследуемый фенотип, являющийся результатом изменений хроматина, не затрагивающих последовательность азотистых оснований в ДНК» (Бергер и др., 2009). Согласно другому определению, «эпигенетика – это область исследований, касающаяся устойчивых изменений в ДНК и в гистоновых белках хроматина, которые приводят к изменениям экспрессии генов» (Таммен и др., 2013).

Эпигеном подразумевает наличие механизмов, направленных на длительное программирование генной экспрессии (активности). Это управление осуществляется с помощью биохимических реакций, контролируемых конкретными ферментами. На сегодняшний день наиболее известны несколько механизмов. Это метилирование ДНК, ковалентные модификации ядерных белков (гистонов), входящих в состав хроматина, и эффекты микроРНК.

Для того чтобы чувствовать себя как рыба в воде, читая далее сведения из научных исследований, нам предстоит разобраться в терминологии, касающейся генов, ДНК, РНК, хроматина, хромосом и т. д. Мы просим вас сделать сейчас несколько приседаний, чтобы добавить крови в мозг, и нырнуть в море биологических терминов, пересыпаемых прибаутками от авторов. На всякий случай мы разбавили текст картинками, а картинки любят все (даже если вы делаете вид #триждыедваненагражденного ученого или врача!).

Человек состоит из клеток – соматических и половых, в каждой (в ее ядре) соматической клетке (обычной, не половой) есть 23 пары хромосом, в половой – один набор хромосом, которые представляют собой упакованные в хроматин молекулы ДНК, намотанные на множество катушек-нуклеосом, состоящих из 8 специальных белков – гистонов. ДНК является совокупностью генов, которых, как мы говорили раньше, по разным подсчетам, от 18 тысяч до 30 тысяч (у человека). Гены состоят из нуклеотидов, содержащих аденин, тимин, гуанин и цитозин. Гены способны давать нам информацию о белках и РНК, которые нужны нам для процесса жизнедеятельности. Благодаря сигналам из окружающей среды гены могут по-разному проявлять свою активность (экспрессию), и один ген может отвечать за выработку многих белков, но иногда для выработки одного белка может потребоваться не один ген, а несколько.

Экспрессия генов – процесс, в котором наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт – РНК или белок. Экспрессия может регулироваться на всех стадиях: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Рис. 6. Уровни организации генетического материала в клетках человека

Гены

Ген — участок ДНК, в котором закодирована информация о строении одного белка.


Рис. 7. Ген – участок ДНК


Ген состоит из нескольких пар нуклеотидов – азотистых оснований, связанных с углеводными остатками и остатками фосфорной кислоты.

Азотистые основания бывают пуриновыми (аденин – А, гуанин – Г) и пиримидиновыми (цитозин – Ц, тимин – Т). Через комплементарные соединения (как ключ и замок) пуринового и пиримидинового оснований нуклеотидов А-Т и Ц-Г, а также через связи углеводистых и фосфорных остатков возникает прочная связь между нуклеотидами.

Если представить ген в виде вагонов поезда, то слева направо будут стоять два особенных вагона – промотор и оператор. Они представляют собой регуляторную область гена.


Рис. 8. Строение нуклеотида. Нуклеотид состоит из азотистого основания, углеводного остатка и остатка фосфорной кислоты


Промотор – последовательность, с которой связывается фермент полимераза в процессе инициации (начального этапа) транскрипции.


Рис. 9. Строение гена, его области, выполняющие различные функции (Источник: childrenscience.ru)


Оператор – это область, с которой могут связываться специальные белки – репрессоры, которые могут уменьшать активность синтеза РНК с этого гена, иначе говоря, уменьшать его экспрессию.

Далее идет состав из трех вагонов, который называется единицей транскрипции (транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез иРНК или мРНК). Слева и справа этого состава находятся два коротких вагона – нетранслируемые 5’- и 3’-последовательности. Они выполняют регуляторные и вспомогательные функции, например обеспечивают посадку рибосомы[6] на иРНК. В середине длинный вагон – кодирующая последовательность – основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

У эукариот (одноклеточных и многоклеточных организмов, имеющих ядро и органеллы в клетке), в том числе и у человека, кодирующая последовательность гена чаще всего разделена на транслируемые участки – экзоны и нетранслируемые участки – интроны.

Правее всех находится отдельный вагон, называемый терминатором – нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

Все вагоны поезда едут вместе, просто в разных вагонах происходят разные события.

Для справки:

Транскрипция – процесс синтеза информационной иРНК (или матричной – мРНК) с целью переписывания информации о будущем белке с того участка гена на молекуле ДНК, который называется единицей транскрипции. В процессе транскрипции двухспиральная молекула ДНК раскручивается на 2 витка спирали, затем опять скручивается после ее завершения.

РНК

РНК – рибонуклеиновая кислота – одна из трех основных макромолекул (две другие – ДНК и белки), которые содержатся в клетках всех живых организмов и играют важную роль в кодировании, прочтении, регуляции и выражении генов.

РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Набор азотистых оснований в РНК немного отличается от набора в генах и ДНК – вместо тимина в РНК находится урацил (У). Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют матричную РНК (мРНК) для программирования синтеза белков.

 

Клеточные РНК образуются в ходе транскрипции при участии специальных ферментов – РНК-полимераз. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией.

Трансляция – это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны. После этого проходит процесс сплайсинга, в результате которого интроны вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок. Такая организация генов позволяет, например, осуществить процесс альтернативного сплайсинга, когда с одного гена могут быть синтезированы разные формы белка за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях. Это напоминает процесс, когда две швеи шьют лоскутные одеяла, произвольно выбирая и совмещая цветные кусочки ткани.


Рис. 10. Процесс альтернативного сплайсинга


Трансляция — («перенос, перемещение») – осуществляемый рибосомой процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК); реализация генетической информации.


Рис. 11. Процесс трансляции (синтеза белка из аминокислот)


Белки — это важнейшие макромолекулы в нашем организме. Википедия хорошо дала определение белков и обозначила их роль в нашем организме:

«Белки (полипептиды) – высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединенных в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его работы в клетке…

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров – полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя клеточный скелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки – важная часть питания животных и человека (основные источники – мясо, птица, рыба, морепродукты, молоко, орехи, бобовые, зерновые; в меньшей степени – овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все незаменимые аминокислоты, и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потребленные белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

ДНК. Метилирование

ДНК — это улица из домов – наших генов, которые стоят в ряд друг за другом. ДНК из себя представляет длинную молекулу (несколько сантиметров). ДНК – органический полимер, состоящий из мономеров – нуклеотидов. Так как на данный момент самым изученным эпигенетическим механизмом является метилирование ДНК, мы разберем данное явление. В этом процессе идет присоединение метильной группы (-СН3) к азотистому основанию цитозину, в результате чего в ДНК накапливается 5-метилцитозин (метилированный цитозин).

Метилирование ДНК контролирует большое количество генетических механизмов в клетке – репликацию, транскрипцию, репарацию ДНК, рекомбинацию, транспозиции генов, а также является механизмом дифференцировки клеток и тканей, дискриминации и репрессии генов. Также метилирование ДНК выполняет и защитную функцию – препятствует экспрессии экзогенных вирусных и других вредоносных последовательностей ДНК. В случаях полного прекращения метилирования ДНК останавливается и клеточное деление, включается апоптоз, происходит гибель организма. Кроме того, так называемое метилирование «поддерживающего типа» способствует сохранению клеточной памяти о работе промоторных участков генов от одного митоза к другому с целью сохранения функции клеток в ряду поколений. Данный процесс получил название «генетический букмаркинг».


Рис. 12. Метилирование ДНК – присоединение метильной группы -СН3 к азотистому основанию цитозину


(Репликация ДНК – это процесс создания двух дочерних молекул ДНК на основе родительской молекулы ДНК.

Транскрипция ДНК – («переписывание») – процесс синтеза РНК с использованием ДНК в качестве матрицы; перенос генетической информации с ДНК на РНК.

Репарация ДНК – (восстановление) – особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК.

Рекомбинация генов – перераспределение генетического материала (ДНК или РНК) путем разрыва и соединения разных молекул, приводящее к появлению новых комбинаций генов или других нуклеотидных последовательностей.

Транспозиция генов – перемещения небольших участков генетического материала по одной хромосоме или между разными хромосомами. Транспозиции происходят при участии подвижных (мобильных) генетических элементов – транспозонов.

Дискриминация и репрессия генов – механизмы регуляции действия генов, заключающиеся в подавлении транскрипции или трансляции путем связывания белка-репрессора (кодируемого геном-регулятором) с оператором в ДНК либо специфическим участком матричной РНК (мРНК).

Митоз – непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. Неполовые (соматические) клетки человека делятся митозом, а половые (гаметы) – мейозом.

Метилирование в промоторной зоне гена, как правило, приводит к подавлению активности (экспрессии) соответствующего гена. Метилированный цитозин может затем окисляться с помощью особых ферментов, что в конечном итоге приводит к его деметилированию обратно в цитозин.

В ДНК существуют так называемые островки CpG, то есть эти соединения Ц-Г не единичны, а многочисленны и расположены рядом в виде скоплений.

Особенно ими богаты промоторы, очень важные для регуляции активности гена участки. Метилирование промоторных участков генов представляет собой процесс, как будто на эти участки поставили специальные метки. Кстати, они так и называются – метильные метки. Это сопровождается торможением/снижением активности/экспрессии генов из-за того, что в результате метилирования СрG-пар меняется связывание с ДНК различных факторов, участвующих в процессе транскрипции. Некоторые из них являются гормон-рецепторными комплексами. Другими словами, существует связь между гормональными регуляторами, которые участвуют в различных реакциях организма на внешние изменения, и эпигеномом, способным быстро реагировать на изменения и требования среды.


Рис. 13. Островки СрG


Метилирование имеет важное значение, так как не все гены активны постоянно. Большинство из них являются подавленными. Метилирование является эпигенетическим средством сохранения генов, например, гиперметилирование подавляет активность генов до тех пор, пока они не понадобятся. Цель эпигенетической терапии состоит в том, чтобы создать условия для оптимального метилирования, а не повышенного или сниженного.

Сейчас продается много различных «модных» метилированных витаминов в основном западного происхождения. С одной стороны, существуют особые состояния (полиморфизмы) генов, которые не способствуют усвоению, например, цианокобаламина (форма витамина B12), так же эффективно, как метилкобаламина (метильная форма витамина B12). Хотя метильная форма витамина B12 имеет большую биодоступность, но если этими витаминами переборщить, то избыточное их потребление может иметь неблагоприятное эпигенетическое последствие.

В детстве многие любили книгу «Остров сокровищ», где был эпизод, когда пирату принесли черную метку. Наверняка при прочтении возникло чувство тревоги, предчувствие чего-то очень опасного, пусть даже не для самого положительного героя книги. Когда человек подвергается негативным влияниям среды, включая не только некачественную еду, токсины, радиацию, но и стрессовую нагрузку от негативных мыслей (мыслей-«тараканов»), то ему как бы приносят «черную метку эпигенетики». Черная метка – это угроза, которую нельзя игнорировать. Есть ли возможности эту метку уничтожить? Об этом чуть позже.

На самом деле не все метильные метки «черные». «Черными» они становятся тогда, когда угрожают здоровью. На самом деле они нейтральные, или просто метки. В норме у млекопитающих и человека в том числе метилировано около 60–70 % всех CpG-динуклеотидов, то есть на них стоят метки (-СН3). Неметилированные CpG-динуклеотиды сгруппированы в CpG-островки, которые присутствуют в 5'-регуляторных областях многих генов. Различные заболевания, например рак, сопровождаются начальным ненормальным снижением метилирования – гипометилированием ДНК и последующим сверхактивным метилированием – гиперметилированием CpG-островков в промоторных областях генов, что приводит к устойчивому угнетению процесса транскрипции.

Метилирование ДНК происходит при помощи ферментов ДНК-метилтрансфераз (DNMT, англ.). Они принадлежат к некоторым семействам – 1, 2, 3.

Наиболее изученным на сегодня ферментом системы метилирования ДНК у позвоночных является ДНК-метилтрансфераза 1 (DNMT1), которая поддерживает метилированное состояние ДНК, присоединяя метильные группы к одной из цепей ДНК в точках, где другая, комплементарная ей цепь, метилирована.

ДНК-метилтрансфераза 3 семейства DNMT3 (DNMT3A и DNMT3B), экспрессия которой координируется белком DNMT3L (Gowheretal.,2005), лимфоидспецифичной геликазой Lsh (Zhu et al., 2006), микроРНК (Fabbri et al., 2007) и piРНК (Aravin et al., 2008), осуществляет метилирование de novo (de novo-метилирование осуществляет модификацию прежде неметилированных последовательностей ДНК), а функции ДНК-метилтрансферазы 2 до сих пор до конца не изучены.

Хроматин. Ковалентные модификации ядерных белков (гистонов), входящих в состав хроматина

Другим механизмом эпигенетической регуляции является ковалентная модификация ядерных белков-гистонов. В настоящее время известны различные виды модификаций:

• метилирование;

• фосфорилирование;

• рибозилирование;

 

• убиквитинирование;

• ацетилирование.

Все они происходят в посттранскрипционной фазе и главным образом в аминокислотных остатках лизина, аргинина и треонина. Данные биохимические процессы катализируются и регулируются соответствующими ферментами и гормонами.

К каждому остатку лизина может присоединяться до трех метильных групп, в результате чего лизин может быть монометилированным, диметилированным или триметилированным. Аргинины, в отличие от лизинов, могут быть только моно- и диметилированными.

Ацетилирование гистонов связано с добавлением ацильной группы (-COCH3) к лизину ацетилтрансферазами, в то время как деацетилирование заключается в удалении ацильной группы деацетилазами. Ацетилирование лизина связано с активацией транскрипции.

Механизм изменения генной активности связан с модификацией упаковки ДНК в нуклеосомах, то есть степени ее прилегания к белковым субъединицам. Соответственно, от насыщенности гистоновых мономеров остатками фосфорной или уксусной кислоты, рибозы или небольшого консервативного белка убиквитина зависит степень «компактности» упаковки ДНК, от которой, в свою очередь, зависит степень вероятности транскрипции определенных участков генома. Этот процесс осуществляется широким набором соответствующих ферментов, также регулируемых гормонами. В данном случае механизм изменения активности генов связан с модификацией упаковки ДНК в нуклеосомах, то есть степенью ее прилегания к белковым субъединицам.

В детстве у нас были резиночки, которыми мы стреляли друг в друга, растягивая их и отпуская рядом с рукой товарища (друг был недоволен, так как резинка била по руке весьма ощутимо).


Рис. 14. Два основных механизма эпигенетической регуляции – метилирование ДНК и модификация гистонов


Если представить, что у нас в руках такая длинная резинка (наша молекула ДНК), а рядом лежат несколько катушек из-под разноцветных ниток (каждая катушка символизирует октамер – 8 белков-гистонов, мономеров, соединенных вместе). Мы наматываем немного резинки на одну катушку, придерживаем ее, берем следующую, на которую тоже наматывается часть резинки (той же самой), потом еще и еще на оставшиеся катушки… У нас получится связанная вместе конструкция, в которой катушки будут плотно прижаты друг к другу благодаря резинке. Но в случае необходимости мы сможем немного увеличить расстояние между катушками, так как резинка эластичная и может растягиваться. Напомним, что наши катушки были с разноцветными нитками, концы которых свисают их этой общей конструкции. Разный цвет этих ниток – метафора о различных химических соединениях, которыми насыщены гистоновые мономеры.

Чем более гистоновые мономеры насыщены остатками фосфорной или уксусной кислоты, рибозы или небольшого консервативного белка убиквитина (разного цвета нитки в нашем примере), тем менее компактизирована (менее сжата) ДНК и более вероятна транскрипция определенных участков генома.

То есть, чтобы рассмотреть катушку, надо растянуть резинку. Существуют различные ферменты, которые могут регулировать процесс модификации гистонов.

5Цит. по: Двенадцать стульев; Золотой теленок: романы / Илья Ильф, Евгений Петров. – Москва: Издательство АСТ, 2019. – С. 185.
6Рибосома – важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»