Первые три минуты

Текст
8
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

2. Расширяющаяся Вселенная

Созерцая ночное небо, поражаешься неизменности Вселенной. Конечно, оно вращается вокруг Полярной звезды, по лику Луны проплывают облака, а сама Луна, если подождать, убывает, потом снова нарастает и при этом перемещается вместе с планетами на звездном фоне. Но мы-то знаем, что все эти явления происходят поблизости и вызваны движением в нашей собственной Солнечной системе. Звезды же, в отличие от планет, кажутся неподвижными.

Впрочем, звезды все-таки тоже перемещаются – со скоростями, достигающими нескольких километров в секунду. Таким образом за год наиболее быстрые из них запросто могут пролететь десять миллиардов километров или около того. Но это в тысячу раз меньше, чем расстояние даже до ближайших соседок. Поэтому их видимое положение на небе меняется очень медленно. Скажем, сравнительно быстрая звезда Барнарда находится на расстоянии примерно 56 миллионов километров от Земли и движется поперек луча зрения со скоростью 89 км/с (или 2,8 миллиарда километров в год). В результате за один год она смещается всего на 0,0029 градуса. Изменение видимого положения близких звезд астрономы называют «собственным движением». А вот видимое положение более далеких звезд меняется настолько медленно, что их собственное движение не сможет заметить даже самый терпеливый наблюдатель.

Но впечатление о неизменности мироздания обманчиво. Наблюдения, о которых пойдет речь в этой главе, свидетельствуют: Вселенная проходит стадию мощного взрыва, в котором грандиозные звездные острова – галактики – разлетаются со скоростями, сравнимыми со скоростью света. Мы можем мысленно вернуться к началу этого процесса и предположить, что в некий момент в прошлом все эти галактики располагались гораздо ближе друг к другу. Более того, во Вселенной было настолько тесно, что ни галактики, ни звезды, ни даже атомы с их ядрами не могли существовать в цельном виде. Как раз ту эпоху мы и называем «ранней Вселенной», и именно она составляет предмет данной книги.

О расширении Вселенной мы знаем исключительно благодаря тому факту, что астрономы умеют измерять движение светящихся тел вдоль луча зрения гораздо точнее, чем под прямым углом к нему. Этот метод основан на хорошо известном свойстве любых волновых процессов – на так называемом эффекте Доплера. Когда мы принимаем звуковую или световую волну от неподвижного источника, интервал между прибытиями ее соседних гребней такой же, с какими они его покинули. Стоит, однако, источнику начать удаляться, как промежутки времени между приходом гребней становятся больше, чем между моментами испускания. Происходит это потому, что каждый последующий гребень преодолевает большее расстояние, чем предыдущий. Задержка между приходом соседних гребней – это всего-навсего длина волны, деленная на ее скорость. Именно поэтому удаляющийся источник испускает более длинные волны, чем покоящийся. Точнее, относительное увеличение длины волны равно, как показано в математической заметке 1 (с. 233), отношению скорости источника к скорости самой волны. Аналогично, если источник приближается, то время между приходами соседних гребней уменьшается, потому что расстояние, проходимое каждым последующим гребнем, меньше, чем у предыдущего. То есть волна становится короче. Например, представим ушедшего в плавание моряка, который каждую неделю посылает письма с корабля домой. Чем дальше он уплывает, тем дольше идет каждое такое послание, и семья получает их чуть реже, чем раз в неделю. На обратном же пути, чем ближе корабль к порту приписки, тем быстрее идут письма. Это значит, что дома их получают чуть чаще, чем раз в неделю.

В наши дни эффект Доплера в отношении звуковой волны ничего не стоит проверить экспериментально. Выйдя на обочину скоростного шоссе, вы без труда заметите, что звук мотора пролетающего мимо автомобиля выше (т. е. длина волны короче), когда машина приближается, и ниже – когда удаляется. Приоритет в обнаружении этого эффекта (как для звука, так и для света) безусловно принадлежит преподавателю математики пражского Политехнического института Иоганну Кристиану Доплеру, открывшему его в 1842 г. В 1845 г. голландский метеоролог Кристофер Генрих Дитрих Бейс-Балло подверг звуковой эффект Доплера экспериментальной проверке. В выдумке Бейс-Балло не откажешь: в качестве движущегося источника звука он взял ансамбль трубачей, которые стояли на платформе поезда, ехавшего по сельским просторам вблизи города Утрехта.

Доплер полагал, что его эффект поможет объяснить, почему звезды бывают разных цветов. Свет удаляющихся от Земли звезд сдвинулся бы в сторону больших длин волн. А поскольку у красного длина волны больше, чем средняя длина волны видимого света, то и звезды показались бы нам покрасневшими. Аналогично в сторону более коротких длин волн сдвинулся бы свет от звезд, приближающихся к Земле. Поэтому они, на наш взгляд, казались бы непривычно голубыми. Однако вскоре Бейс-Балло и другие указали, что эффект Доплера к цвету звезд не имеет никакого отношения. Да, синий цвет в излучении удаляющейся звезды действительно меняется на красный. Но в то же время не различаемый человеческим глазом ультрафиолет сдвигается в синию часть видимого спектра, так что общий цвет вряд ли сильно меняется. На самом же деле у звезд разные цвета потому, что у них разная температура поверхности.

Однако триумф эффекта Доплера в астрономии все же состоялся: в 1868 г. его применили к изучению отдельных спектральных линий. За много лет до этого, в 1814–1815 гг., оптик из Мюнхена Йозеф Фраунгофер обнаружил, что если заставить солнечный свет пройти сначала через узкую щель, а потом через стеклянную призму, то получается цветной спектр, усеянный сотнями темных линий, каждая из которых представляет собой изображение щели. Некоторые из этих линий Вильям Гайд Волластон наблюдал еще раньше, в 1802 г., но большого внимания тогда на них не обратил. Эти линии всегда приходились на одни и те же цвета, имеющие строго определенные длины волн. Те же самые линии на тех же самых местах Фраунгофер увидел и в спектрах Луны и ярких звезд. А вскоре стало ясно, что они возникают тогда, когда свет от нагретой поверхности звезды проходит через ее более холодную атмосферу, которая его выборочно поглощает на определенных длинах волн. Каждая линия обязана своим появлением какому-нибудь химическому элементу, поглощающему свет на этой длине волны. Таким образом было установлено, что химические элементы на Солнце – такие как натрий, железо, магний, кальций и хром – не отличаются от химических элементов на Земле. (Как сегодня известно, длины волн темных линий таковы, что фотон с этой длиной волны имеет как раз нужную энергию для того, чтобы перевести атом из низкоэнергетического состояния в возбужденное.)

В 1868 г. сэр Уильям Хаггинс убедительно продемонстрировал, что темные линии в спектрах некоторых ярких звезд по сравнению с их нормальным положением в спектре Солнца немного сдвинуты в красную или синюю область. Он верно истолковал это явление как доплеровское смещение света звезды, удаляющейся или приближающейся к Земле. Например, длины волн всех темных линий в спектре звезды Капелла больше соответствующих длин волн в спектре Солнца на 0,01 %. Этот сдвиг в красную область означает, что Капелла летит от нас со скоростью, составляющей 0,01 % от скорости света, т. е. 30 км/с. Впоследствии эффект Доплера помог измерить скорости солнечных протуберанцев, двойных звезд и колец Сатурна.

Методу определения скоростей с помощью доплеровского смещения по самой его сути присуща высокая точность: в таблицах длины волн зачастую приводятся с восемью значащими цифрами. Достоверность метода не зависит и от расстояния до источника, если последний светит достаточно сильно для того, чтобы можно было увидеть спектральные линии на фоне излучения ночного неба.

Как раз благодаря эффекту Доплера нам известны типичные значения скоростей звезд, упоминавшихся в начале этой главы. Он также позволяет оценивать расстояния до ближайших звезд. Если из каких-либо соображений задать направление движения звезды, то доплеровское смещение дает возможность вычислить ее скорость как поперек луча зрения, так и вдоль него. Таким образом, измерив видимое движение звезды по небу, мы можем сказать, насколько она далеко от нас. Однако эффект Доплера начал играть в космологии важную роль лишь тогда, когда астрономы занялись изучением спектра объектов, расположенных значительно дальше видимых звезд. Мне придется чуть отвлечься, чтобы рассказать об открытии этих объектов, – а потом мы снова вернемся к эффекту Доплера.

Эту главу мы начали с созерцания ночного неба. Помимо Луны, планет и звезд существуют еще два небесных тела, значение которых для космологии трудно переоценить.

Первое из них настолько величественно и грандиозно, что его бывает можно рассмотреть даже на засвеченном городском небе. Эта полоса света, опоясывающая небесную сферу огромным кольцом, с древних времен носит имя Млечный Путь. В 1750 г. английский астроном-любитель Томас Райт, мастеривший приборы своими руками, опубликовал замечательную книгу «Оригинальная теория, или Новая гипотеза об устройстве Вселенной»[3]. В ней он предположил, что звезды образуют плоскую круглую плиту – своего рода «точильный круг» конечной толщины, простирающийся далеко по всем направлениям. Внутри него лежит и Солнечная система. Поэтому, естественно, когда мы смотрим с Земли вдоль плоскости круга, то видим больше света, чем по всем другим направлениям. И называем это Млечным Путем.

Много позже гипотеза Райта получила свое подтверждение. По современным представлениям, Млечный Путь состоит из плоского звездного диска диаметром 80 тысяч световых лет и толщиной 6000 световых лет. Кроме того, существует сферическое гало из звезд диаметром почти 100 тысяч световых лет. Оценки его полной массы дают величину в 100 миллиардов солнечных масс. Впрочем, некоторые астрономы считают, что в протяженном гало Млечного Пути может набраться еще изрядная доля массы. Солнечная система находится в 30 тысячах световых лет от центра и немного «севернее» главной плоскости диска. Последний вращается – скорости в нем достигают 250 км/с – и обладает гигантскими спиральными рукавами. В целом впечатляющее зрелище – если бы только мы могли посмотреть на все это снаружи! Сегодня эту систему называют Галактикой или же, если хочется выразить особую гордость, «нашей Галактикой».

 

Еще один интересный для космологии штрих на ночном небе, в отличие от Млечного Пути, в глаза совсем не бросается. В созвездии Андромеды есть туманное пятнышко, которое не так легко заметить, но которое отчетливо видно в ясную ночь – если знаешь, где его искать. Первое письменное упоминание об этом объекте, вероятно, было сделано в «Книге неподвижных звезд» – каталоге, составленном персидским астрономом Абдаррахманом Ас-Суфи в 964 г. до н. э. Ас-Суфи описал его как «облачко». С появлением телескопов таких протяженных объектов стали находить все больше и больше. В XVII–XVIII вв. астрономы воспринимали их в качестве помех, препятствовавших поиску, как тогда казалось, по-настоящему интересных объектов – комет. В 1781 г. Шарль Мессье опубликовал знаменитый каталог «Туманности и звездные скопления» со списком объектов, на которые не следует смотреть, когда охотишься за кометами. Астрономы до сих пор ссылаются на 103 объекта из этого каталога по присвоенным Мессье номерам. Так, Туманность Андромеды обозначается как M31, Крабовидная туманность – M1 и т. д.

Еще во времена Мессье было понятно, что все эти протяженные объекты имеют разную природу: одни – скопления звезд (например, Плеяды – M45), другие – неправильной формы облака светящегося газа, часто окрашенные в различные цвета и обволакивающие одну или несколько звезд (например, гигантская Туманность Ориона – M42). Однако около трети объектов из каталога Мессье представляли собой белесые туманности довольно правильной эллиптической формы, среди которых выделялась Туманность Андромеды (M31). Позже с помощью более совершенных телескопов были обнаружены тысячи таких объектов, а к концу XIX столетия в некоторых из них (в том числе в M31 и M33) астрономы нашли и спиральные рукава. Тем не менее даже лучшие телескопы XVIII–XIX вв. были не в состоянии разрешить эллиптические и спиральные туманности на звездах, из-за чего их природа оставалась под вопросом.

Первым, кто догадался, что эти туманности – в сущности, похожие на нашу галактики, был, по всей видимости, Иммануил Кант. В 1755 г. в своей «Всеобщей естественной истории и теории неба» он развил теорию Райта об устройстве Млечного Пути. Кант предположил, что эти туманности («или, вернее, один из видов их») – на самом деле круглые диски примерно тех же размеров и формы, как и наша собственная Галактика. Они кажутся эллиптическими, поскольку на большинство из них мы смотрим под углом. Ну а тусклые они просто потому, что находятся от нас очень далеко.

К началу XIX в. представление о Вселенной, «населенной» галактиками вроде нашей, получило широкое распространение, хотя, конечно, разделяли его не все: нельзя было исключить, что эти эллиптические и спиральные туманности, как и другие объекты каталога Мессье, – не более чем облака в пределах Млечного Пути. В частности, ученым не давали покоя взрывающиеся звезды, замеченные в некоторых спиральных туманностях. Если последние – действительно отдельные галактики, настолько далекие, что разглядеть их звезды невозможно, то взрывы должны были быть невероятной силы. Иначе как мы могли бы увидеть столь яркую вспышку на таком большом расстоянии? В связи с этим не могу не процитировать один образчик научной прозы XIX столетия. В 1893 г. английский историк астрономии Агнесса Мэри Клерк отмечала:

«Всем известная туманность в Андромеде и «водоворот» в Гончих Псах – одни из наиболее примечательных примеров туманностей, обладающих непрерывным спектром. Также справедливо общее правило, согласно которому излучение всех подобных туманностей принадлежит к одному и тому же классу и схоже с излучением звездных скоплений, отнесенных на большое расстояние и за счет этого приобретших размытый вид. Было бы, однако, в высшей степени опрометчивым заключить в этой связи, что они – суть объединения солнцеподобных тел. Основания для этого вывода в значительной мере сведены на нет фактами возникновения в двух таких туманностях звездных вспышек с периодом в четверть века. Как бы далека ни была туманность, представляется неоспоримым, что ее звезды удалены от нас не меньше. Следовательно, если бы ее составляли солнца, то по сравнению с ними вспыхнувшие огненные шары, почти без остатка затмевающие и без того тусклый свет первых, должны были бы быть, как доказал мистер Проктор, настолько яркими, что воображение отказывается их в себя вместить».

Сегодня мы знаем, что эти звездные вспышки действительно были «настолько яркими, что воображение отказывается их в себя вместить». Это были взрывы сверхновых, взрывы, в которых светимость звезд становилась сравнимой со светимостью всей галактики. Но в 1893 г. об этом ничего не было известно.

Вопрос о природе спиральных и эллиптических туманностей так и остался бы неразрешенным без появления какого-нибудь надежного метода измерения расстояний до них. Такая масштабная линейка была найдена вскоре после запуска 100-дюймового телескопа в обсерватории Маунт-Вильсон вблизи Лос-Анджелеса. В 1923 г. Эдвин Хаббл впервые «разрешил» Туманность Андромеды на отдельные звезды. При этом в ее спиральных рукавах он обнаружил несколько ярких переменных звезд, перепады в светимости которых имели те же закономерности, что и у цефеид – уже известного класса переменных звезд нашей Галактики. Значение этого открытия становится очевидным, если вспомнить, что в предшествующие десять лет Генриетта Суон Ливитт и Харлоу Шепли из Обсерватории Гарвардского колледжа установили строгую связь между наблюдаемыми периодами цефеид и их абсолютной светимостью. (Абсолютная светимость – это полная лучистая энергия, испускаемая астрономическим объектом по всем направлениям за одну секунду. Видимая светимость – это лучистая энергия, попадающая на каждый квадратный сантиметр зеркала телескопа за одну секунду. Именно видимая, а не абсолютная светимость дает нам субъективную оценку яркости астрономического объекта. Первая зависит, конечно, не только от второй, но и от расстояния. Таким образом, зная одновременно обе светимости небесного тела, мы можем вычислить расстояние до него.) Между обсуждаемыми величинами существует простая зависимость: видимая светимость прямо пропорциональна абсолютной и обратно пропорциональна квадрату расстояния до объекта. Поэтому, зная видимые светимости цефеид в Туманности Андромеды и их периоды, Хаббл тут же посчитал расстояния до них, а значит, и до самой Андромеды. У него получилось, что Туманность Андромеды находится в 900 миллионах световых лет от Земли – т. е. в десять с лишним раз дальше, чем самые далекие из известных объектов нашей Галактики. Позже Вальтер Бааде и другие уточнили соотношение «период – светимость» для цефеид, в результате чего расстояние до Андромеды стало оцениваться в два с лишним миллиона световых лет. Тем не менее уже в 1923 г. было ясно: Андромеда и тысячи подобных ей туманностей – это галактики, которыми в изобилии усыпаны просторы Вселенной.

Еще до того, как была установлена внегалактическая природа туманностей, астрономы уже умели отождествлять линии в их спектрах с описанными линиями в известных атомных спектрах. Однако, как в 1910–1920 гг. заметил Весто Мелвин Слайфер из Обсерватории Лоуэлла, спектральные линии многих туманностей были немного сдвинуты либо в красную, либо в синюю области. Эту закономерность тут же объяснили эффектом Доплера, свидетельствовавшим, что туманности либо удаляются, либо приближаются к Земле. Скажем, Андромеда, как оказалось, движется к нашей планете со скоростью около 300 км/с, а расположенное еще дальше скопление галактик в созвездии Девы удаляется со скоростью примерно 1000 км/с.

Собственное движение звезды Барнарда. Белой стрелкой на этих двух фотографиях, сделанных с интервалом в 22 года, отмечена звезда Барнарда. Легко заметить ее смещение по отношению к более ярким фоновым звездам. За указанное время направление на нее поменялось на 3,7 минуты дуги. Следовательно, «собственное движение» звезды Барнарда составляет 0,17 минуты дуги в год. (Фотографии Йеркской обсерватории.)


Участок Млечного Пути в созвездии Стрельца. На фото изображен Млечный Путь в направлении на центр нашей Галактики, расположенный в созвездии Стрельца. Не вызывает сомнений сплюснутая структура Галактики. Из-за облаков пыли, поглощающих свет находящихся за ними звезд, плоскость Млечного Пути изрезана темными областями. (Фотография Обсерватории Хейла.)


Спиральная галактика M104. Эта гигантская система, состоящая примерно из миллиарда звезд, находится на расстоянии около 60 миллионов световых лет от Земли и очень напоминает нашу собственную Галактику. К нам M104 повернута почти ребром, благодаря чему отлично видно как яркое сферическое гало, так и плоский диск. Последний прочерчивают полосы пыли, похожие на такие же области в нашей Галактике (их легко заметить на предыдущем снимке). Фотография сделана на 60-дюймовом рефлекторе на горе Маунт-Вильсон, штат Калифорния. (Фотография Йеркской обсерватории.)


Знаменитая галактика M31 в созвездии Андромеды. Это ближайшая к нам гигантская галактика. Два ярких пятнышка (вверху справа и чуть ниже центра) – галактики поменьше (соответственно NGC205 и NGC221), удерживаемые на орбите гравитационным полем M31. Другие яркие точки на фото – расположенные в нашей Галактике ближние объекты, которые попали на луч зрения в направлении Андромеды. (Фотография Обсерватории Хейла.)


Участок Туманности Андромеды. На фото показана одна из областей галактики M31 в Андромеде (правый нижний угол – «юго-восточная область» на предыдущем снимке). Эта фотография, сделанная с помощью 100-дюймового телескопа на горе Маунт-Вильсон, обладает достаточным разрешением для того, чтобы разглядеть в рукавах M31 отдельные звезды. Именно благодаря последним Хаббл в 1923 г. смог убедительно доказать, что M31 является не одной из внешних областей Млечного Пути, а отдельной галактикой, более или менее похожей на нашу. (Фотография Обсерватории Хейла.)


Поначалу астрономы думали, что эти скорости являются проявлением движения нашей Солнечной системы относительно галактик, к части из которых она приближается, а от других удаляется. Однако по мере того как появлялись новые спектры галактик (в большинстве своем содержащие сдвиг в красную область), такое объяснение заслуживало все меньше доверия. Получалось, если убрать из рассмотрения близкие туманности вроде Андромеды (коих существуют считаные единицы), все остальные галактики летят от Земли. Разумеется, это не означает, что наша Галактика занимает какое-то привилегированное центральное положение. Отсюда, скорее, следует вывод, что Вселенная проходит стадию взрыва, во время которой каждая галактика удаляется от любой другой.


Участок Туманности Андромеды. На фото показана одна из областей галактики M31 в Андромеде (правый нижний угол – «юго-восточная область» на предыдущем снимке). Эта фотография, сделанная с помощью 100-дюймового телескопа на горе Маунт-Вильсон, обладает достаточным разрешением для того, чтобы разглядеть в рукавах M31 отдельные звезды. Именно благодаря последним Хаббл в 1923 г. смог убедительно доказать, что M31 является не одной из внешних областей Млечного Пути, а отдельной галактикой, более или менее похожей на нашу. (Фотография Обсерватории Хейла.)


Зависимость между красным смещением и расстоянием. Здесь изображены яркие галактики (вместе со своими спектрами) из пяти скоплений. Спектр галактики представляет собой длинный белый горизонтальный мазок, пересеченный набором коротких темных вертикальных линий. Каждая из них возникает, когда свет с определенной длиной волны поглощается в атмосферах находящихся в данной галактике звезд. (Яркие вертикальные линии сверху и снизу – не что иное, как эталонные спектры, накладываемые на спектры галактик для вычисления длины волн.) Стрелки под каждым спектром показывают смещение двух конкретных линий поглощения (H- и K-линия кальция) в правую (красную) область относительно их обычного положения. Если объяснять это эффектом Доплера, получаются скорости в диапазоне от 1200 (для скопления галактик в созвездии Девы) до 61 000 км/с (в Гидре). Считая красное смещение пропорциональным расстоянию, видим, что последнее увеличивается от первой из приведенных галактик к последней. (При вычислении указанных расстояний было принято, что постоянная Хаббла равна 15,3 километра в секунду на миллион световых лет.) В пользу такой интерпретации говорит то, что с увеличением красного смещения данные галактики становятся меньше и тусклее. (Фотография Обсерватории Хейла.)

 

Эта гипотеза получила широкое признание после 1929 г., когда Хаббл заявил, что, как видно из его наблюдений, красное смещение галактик в первом приближении прямо пропорционально расстоянию до них. Ценность этого факта в том, что он неизбежно следует из структуры потоков вещества во взрывающейся Вселенной – простейшая модель, которую только можно придумать.

Интуитивно кажется логичным, что в заданный момент времени Вселенная для всех наблюдателей в типичных галактиках выглядит одинаково по всем направлениям. (Здесь и далее я буду называть галактику «типичной», если она переносится всеобщим космическим течением галактик и не имеет относительно него собственной, или пекулярной, скорости.) Эта гипотеза настолько естественна (по крайней мере со времен Коперника), что английский астрофизик Эдуард Артур Милн присвоил ей звание космологического принципа.

Если применить последний к каждой галактике, приходим к выводу: любой наблюдатель будет видеть одно и то же распределение скоростей остальных галактик независимо от того, в какой из них находится он сам. А элементарные математические выкладки показывают, что если этот принцип верен, то относительная скорость каждой пары галактик пропорциональна расстоянию между ними, что и наблюдал Хаббл.

Чтобы удостовериться в этом, рассмотрим три типичные галактики A, B и C, расположенные в ряд (рис. 1). Предположим, что расстояние между A и B такое же, как между B и C. Какова бы ни была скорость B, наблюдаемая в A, космологический принцип требует, чтобы у C была та же самая скорость относительно B. Но тогда, заметьте, галактика C, которая от A вдвое дальше, чем B, будет удаляться от A тоже в два раза быстрее, чем B. Таким же образом к этой цепочке можно добавлять все новые и новые галактики, и результат будет тем же: скорость разбегания любой пары галактик окажется пропорциональна расстоянию между ними.


Рис. 1. Однородность и закон Хаббла. Здесь изображена цепочка равноудаленных друг от друга галактик A, B, C… Скорости, которые измеряют наблюдатели в A, B и C, показаны стрелками, имеющими определенные направление и длину. Принцип однородности требует, чтобы скорость галактики C, которую наблюдает B, равнялась скорости галактики B, которую наблюдает A. Складывая эти два значения, получаем скорость C, которую наблюдает A, – она представлена стрелкой вдвое большей длины. Продолжая в том же духе, можно изобразить полное распределение скоростей, представленное на рисунке. Как видно, их величины подчиняются закону Хаббла: скорость одной галактики, измеряемая наблюдателем в любой другой, пропорциональна расстоянию между ними. Это – единственное распределение скоростей, которое не противоречит принципу однородности


Как это часто бывает в науке, сей факт можно использовать и как следствие, и как предпосылку. Наблюдения Хаббла косвенно подтвердили справедливость космологического принципа. С философской точки зрения это весьма привлекательный вариант: нет причин полагать, что разные области Вселенной или разные направления в ней отличаются друг от друга. Кроме того, закон Хаббла подкрепляет нашу уверенность в том, что речь идет не о местном порыве ветра в космическом циклоне, а о довольно обширной области Вселенной. И наоборот, мы можем принять истинность космологического принципа a priori и вывести из него прямую пропорциональность между расстоянием и скоростью, как это было сделано выше. В любом случае, производя сравнительно несложную процедуру измерения доплеровских смещений, мы можем по скоростям давать оценки расстояний до очень далеких объектов. В пользу космологического принципа говорят и другие, не связанные с эффектом Доплера наблюдательные доводы. Если не обращать внимания на очевидные искажения, вносимые Млечным Путем и близким к нам большим скоплением галактик в созвездии Девы, Вселенная с Земли выглядит невероятно изотропной. Другими словами, она одинакова по всем направлениям. (Об этом недвусмысленно говорит и реликтовое излучение, речь о котором пойдет в следующей главе.) Еще Коперник учил: довольно неосмотрительно предполагать, будто человечество занимает во Вселенной какое-то обособленное место. Поэтому, если Вселенная изотропна рядом с нами, она, скорее всего, изотропна и для наблюдателей во всех типичных галактиках. Кроме того, последовательными вращениями вокруг разных центров каждую точку Вселенной можно перевести в любую другую точку (рис. 2). Соответственно, если Вселенная изотропна вокруг любой точки, она с необходимостью однородна.

3Original Theory of New Hypothesis of the Universe (англ.). – Примеч. пер.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»