Читать книгу: «Wüsten», страница 2

Шрифт:

2.2 Heiße/warme Wüsten: Definition und Differenzierung

Es ist schwer, eine befriedigende und umfassende Kurzdefinition des Wüstenbegriffs zu finden. Die Bezeichnung Wüste ist international inhaltlich weit gefasst, nicht klar umrissen und eignet sich nicht zur unmittelbaren vergleichenden Bewertung oder ökologischen Einstufung. Im Folgenden wird Wüste als vegetationsgeographischer oder standort-ökologischer Begriff aufgefasst, d. h. die Intensität, Menge und das Erscheinungsbild des Pflanzenwuchses wird als Kriterium herangezogen. Für Gradmann (1916) sind Wüsten klimatisch bedingte Trockengebiete mit sehr geringen (meist weit unter 250 mm bleibenden) episodischen Niederschlägen, in denen eine extrem xerophytisch ausgerüstete Vegetation zwar nicht zu fehlen braucht, aber äußerst lückenhaft ist. Dieses Zitat erscheint noch immer am besten zur Beschreibung und Definition des Begriffs Wüste geeignet:

„Wüste ist ein Gebiet, das infolge geringfügiger oder gar fehlender Niederschläge nur eine sehr geringe Vegetation mit erheblichen Zwischenräumen zwischen den einzelnen Pflanzen aufweist.“ Diese Bedingung gilt als erfüllt, wenn weniger als 10 % der Fläche oder der gesamte Raum keine dauerhafte Vegetation besitzt bzw. sich stellenweise nur kontrahierter Bewuchs zeigt. Damit ist eine handhabbare, nachvollziehbare Eingrenzung gegeben, der auch in diesem Buch meist gefolgt wird – auch wenn im nordamerikanischen oder australischen Sprachgebrauch eine andere Vorstellung zu Grunde liegt (s. o.).

Je nach Besatzdichte der perennen (ganzjährigen) Pflanzenarten kann noch zwischen Rand- und Kern- sowie Voll- und Extremwüste (Foto 1; Abb. 2, 15) unterschieden werden. Als vermittelnder Übergangsbereich zu feuchteren Regionen (Savannen, Steppen) wird die Halbwüste (Randwüste) angesehen, bei der generell weniger als 50 % der Fläche von Pflanzen besetzt sind (Jätzold 2003; A. Gabriel 1961; Fotos 10, 64). Die Vegetation der Halbwüsten ist diffus verteilt und in Tiefenlinien kontrahiert. Halbwüsten treten mit < 50 % und >10 % Vegetationsbedeckung durchaus unterschiedlich in Erscheinung, repräsentieren eine relativ großes Spektrum an landschaftlich-vegetationsgeographischen Mustern. Sie sind geprägt durch eine karge Vegetationsausstattung aus Gräsern, Halbsträuchern, Holzgewächsen und Sukkulenten. Halbwüsten, Wüstensavannen oder Wüstensteppen – oft mehr oder minder synonym verstanden – wurden früher als traditionelle Weidegebiete von Hirtennomaden genutzt. Heute dienen sie regional als extensive, ökonomisch oder stammesrechtlich ausgerichtete (Dauer-)Weidegebiete und unterliegen damit häufig Desertifikationsprozessen durch Überweidung (Kap. 4.8).

Anmerkung: Neben den warmen Wüsten sind noch die Kältewüsten in Polar- und Hochgebirgsregionen anzuführen, deren Existenz auf Wärmemangel (und regional auch auf Trockenheit) zurückzuführen ist. Aber auch hier lässt sich der Parameter Bedeckungsgrad < 10 % zur Abgrenzung von den Tundrengebieten anwenden (Kap. 4.6).

2.3 Hygrische Abgrenzung der Wüsten

Die Wissenschaft verwendet je nach Fragestellung und Fachdisziplin unterschiedliche Definitionen, Abgrenzungen und Untergliederungen. In der von Shmida (1995) vorgeschlagenen Definition von Wüstenökosystemen ist ein guter Ansatz zumindest für die Wüsten der Alten Welt zu sehen: Er beruht auf der Zuordnung von jährlicher Niederschlagsmenge zu einem bestimmten Wüstentyp (Ariditätsgrad).

Extremwüste: <70 mm N/Jahr

Vollwüsten: <120 mm N/Jahr

Halbwüsten: 100/150 mm N/Jahr

Die 100- bis 120-mm-Isohyete ist häufig als die Grenze bzw. der Übergangssaum zwischen Halbwüste (Wüstensteppe/-savanne) und der Wüstenvegetation (Zwergstrauchgesellschaften mit <10 % Flächenbedeckung) festgestellt worden. Dies sind für einen enger gefassten Wüstenbegriff geeignete, praktikable Schwellenwerte, denen auch im Buchtext gefolgt wird (s. Tab. 1). Es kann jedoch – in Anbetracht der Konzeption der internationalen Literatur – keine einheitliche Handhabung geben. Entsprechend wird bei der Behandlung der australischen Wüsten ein weitergefasster Wüstenbegriff benutzt. Zahlreiche Untersuchungen haben gezeigt, dass Wüsten und ihre angrenzenden Räume sehr sensibel auf klimatische Veränderungen reagieren und mit den geänderten hygrischen Parametern auch die Grenzsäume fluktuieren.

Tab. 1 Äußere Grenzen und Unterteilungen der tropisch/subtropischen Trockengebiete in Abhängigkeit von den Jahresniederschlägen (n. Schultz 2000)


Der Grenze zwischen … … entspricht ein Jahresniederschlag von etwa …
äquatorwärts Wüste – Halbwüste Halbwüste – Dornsavanne Dornsavanne – Trockensavanne (sommerfeuchte Tropen) 125 mm 250 mm 500 mm
polwärts Wüste – Halbwüste Halbwüste – winterfeuchte Steppen winterfeuchte Steppen – Hartlaub-Strauchformationen (winterfeuchte Subtropen) 100 mm 200 mm 300 mm

[zurück]

3 Zur (Klima-)Geschichte der Wüsten

Für die ökologische Konstellation sowie die Gestaltung und Dynamik der Erdoberfläche (Reliefsphäre) war und ist ganz entscheidend das regionale oder überregionale Klimaregime verantwortlich, das – in Abhängigkeit von Gesteinseigenschaften und Tektonik – die landschaftliche Evolution und Transformation des jeweiligen Raumes prägt. Es bestimmt wesentlich das exogene Prozessgefüge von Verwitterung und Abtragung, die Geomorphodynamik. In der erdgeschichtlichen Entwicklung ist klimatische Unstetigkeit Normalität. Globale Kaltphasen mit regionaler Vereisung oder Abkühlung und atmosphärische Trockenheit (Kaltzeiten; Glaziale) wechselten sich allein in den letzten 2 Mio. Jahren mehr oder weniger regelmäßig ab, unterbrochen von wärmeren und feuchteren Perioden (Warmzeiten; Interglaziale). In diesem Rahmen der globalen Klimavariabilität ist folglich auch die Geschichte der Wüsten zu sehen: Mit einer kühleren Atmosphäre geht eine Zunahme der Wüstenflächen und eine Intensivierung des Wüstencharakters einher; eine wärmere Troposphäre nimmt dagegen mehr Feuchte auf und lässt die Wüstenareale schrumpfen.

3.1 Antarktische Vereisung: neogene Abkühlung und Aridisierung

Wüstenhafte Verhältnisse hat es im Lauf der Erdgeschichte und der Entwicklung der Kontinente immer wieder gegeben, aber auch Zeiten, in denen sie fehlten und teils üppigen Vegetationsformationen Platz gemacht haben. So begann auch die jüngste geologische Ära, das Tertiär, vor etwa 65 Mio. Jahren mit einer langen warm-feuchten Klimaperiode während des Alttertiärs, die offensichtlich von Pol zu Pol eine Waldbedeckung bewirkte. Zeugnisse sind alt- bis mitteltertiäre Steinkohlelager auf Spitzbergen (Arktis) oder die mitteleuropäischen Braunkohlen (Ville, Wetterau, Lausitz). Laterit- und Bauxitvorkommen am Vogelsberg belegen eine intensive chemische Gesteinsverwitterung, die man als tropoid bezeichnen könnte. Immer wieder werden auch fossilisierte Holz- und Blattfunde aus der damals noch unvergletscherten, offensichtlich bewaldeten Antarktis gemeldet.

Tab. 2 Stratigraphische Gliederung des Känozoikums (n. Eberle et al. 2010)


Ära System Serie Alter Mio. Jahre
KÄNOZOIKUM Quartär Neogen Paläogen Holozän Pleistozän Pliozän Miozän Oligozän Eozän Paläozän 2,6 24 65

Die jüngere Geschichte der waldarmen oder waldfreien – und damit auch der wüstenhaften – Landschaften beginnt mit dramatischen plattentektonischen Veränderungen: Der Urkontinent Pangäa teilt sich vor etwa 200 Mio. Jahren in Laurasia (später Laurentia und Eurasien) und den Südkontinent Gondwana. Dieser spaltet sich wiederum auf und bildet zwischen den entstehenden Kontinenten und Inseln neue Ozeane: Vor ungefähr 125 Mio. Jahren trennen sich Südamerika und Afrika; der Atlantik entsteht. Im Verlauf des Tertiärs bildet Australien einen eigenen Kontinent; auch Neuseeland ist ein Bruchstück des alten Gondwana-Riesenkontinents. Antarktika bewegt sich in eine zentrale südpolare Lage, was seinen Energiehaushalt völlig verändert – und damit auch die Klimageschichte des gesamten Globus. Vorderindien driftet auf die Nordhalbkugel und kollidiert mit der Eurasischen Masse; Himalaya und das Tibetische Hochplateau entstehen. Die alpidische Orogenese erzeugt einen Gebirgskomplex von den Pyrenäen bis zum Hindukusch. Von Alaska bis nach Feuerland entwickeln sich die nord- und südamerikanischen Kordilleren als Barrieren in wichtigen Windsystemen. Ihre Konfiguration aus Gebirgsketten, intramontanen Becken und Hochplateaus bildet bei der zunehmenden globalen Abkühlung die Ursache für ausgedehnte wie auch kleinräumige orographische Wüsten (Lee-Wüsten).

Mit der neu konfigurierten Erdoberfläche wird vor allem im Neogen der früher ungehinderte Wärmeaustausch zwischen der Äquatorialregion und den Polen abgeschwächt. Eine globale Abkühlungstendenz ist festzustellen (Abb. 4); aufgrund der geringen Wärmeeinstrahlung beginnt im Oligozän (– 38 Mio. Jahre) die Vereisung der Antarktis. Seit dieser Zeit ist die Antarktis wohl nie mehr eisfrei. Mit der definitiven Trennung und Isolierung des Südkontinents von allen übrigen Gondwana-Fragmenten kann sich die Kaltwasserzirkulation des Antarktischen Ringstroms entwickeln (vgl. Blümel 1999). Von hier aus dringt kaltes, dichtes Tiefenwasser durch die ozeanischen Becken bis weit in die Nordhalbkugel hinein. Es etabliert sich unter der ozeanischen Thermosphäre mit Wassertemperaturen über 20 °C die Psychrosphäre als kaltes Stockwerk mit < 10 °C (bis stellenweise < 0 °C). Der konvektive Ferntransport kalten Wassers sorgt für eine im Trend anhaltende globale atmosphärische Abkühlung. Die Weltmitteltemperatur sinkt deutlich um etwa 4 – 5 K; heute liegt sie bei 14/15 °C. Die Antarktis wirkt wie ein globales Kälteaggregat: Ein System aus hoch aufragendem Inlandeis und einem saisonal von Eis bedeckten, circumpolaren Kaltwassergürtel (Antarktischer Ringstrom) sowie daraus in alle Ozeane abströmende dichte, kalte Wässer erniedrigten allmählich die Temperatur der Atmosphäre (Abb. 4).


Abb. 4

Klimatische Abkühlung im Tertiär und Quartär, dokumentiert durch Sauerstoffisotopenbestimmungen (δ18O) in Einzellern (benthische Foraminiferen). Vermerkt sind zeitlich zugehörige Gebirgsbildungen und ozeanographisch-glaziologische Veränderungen (veränd. n. Arz et al. 2007).

Das Messinian Event – Austrockung des Mittelmeeres

Die übergeordnete Antarktisvereisung bezog ab etwa 10 Mio. Jahren den westlichen Archipel mit ein und gipfelte am Ende des Miozäns (vor ca. 5,5 Mio. Jahren) in der Maximalvereisung (Queen Maud-Stadium). Gegenüber heute speicherte die Antarktis etwa 50 % mehr Eis. Damit verbunden war eine eustatische Absenkung des Meeresspiegels um 50 – 60 m. Die Meerenge von Gibraltar fiel trocken; der Zufluss aus dem Atlantik wurde unterbrochen. Das Mittelmeer trocknete (mehrfach) aus und bildete eine weiträumige Wüste, in deren Becken sich riesige Salzpfannen bildeten, in denen ca. 6 % des im Weltmeer gelösten Salzes eingedampft und ausgefällt wurden. Es entstanden mächtige Salzlagerstätten (Hsü 1972). Rhône und Nil mündeten als endorhëische (binnenländische) Flüsse über große Katarakte in das mediterrane Wüstenbecken und verdunsteten.

Ob die glazial-eustatische Meeresspiegelabsenkung alleine für diesen Vorgang verantwortlich ist, oder ob auch tektonische Hebungen an der Gibraltar-Schwelle mitgewirkt haben, ist offen. Erdgeschichtlich wird diese dramatische Entwicklung als Messinian Event bezeichnet. Dessen Begleiterscheinungen haben möglicherweise die globale Klimaentwicklung in Richtung Abkühlung und Wüstenbildung weiter vorangetrieben: Da der geringere Salzgehalt das Meerwasser schneller gefrieren lässt, wird vermutet, dass dadurch der Eisaufbau im Nordpolargebiet unterstützt wurde und die arktischen Kältewüsten entstanden.

Mit der kälteren Atmosphäre sinkt ihr Wassergehalt – die Niederschläge nehmen generell ab. Ozeanität und Kontinentalität akzentuieren sich. Kalte Auftriebswässer aus der Antarktis verursachen eine Aridisierung südwest-afrikanischer und süd-amerikanischer Küstenabschnitte. Es entstehen mit der Namib und der Atacama die ersten extremen Wüsten an den westlichen Kontinenträndern von SW-Afrika und S-Amerika; das belegen zahlreiche Untersuchungen (vgl. Eitel 1994; Kap. 12, 13). Auf den Festländern steigert sich die Trockenheit und weitet sich aus. Man kann davon ausgehen, dass durch die allmähliche globale Veränderung der klimatischen Zirkulationsmuster, insbesondere durch die zunehmende atmosphärische Kühle und Trockenheit, ein breiteres Spektrum an Vegetationsformationen entstand: Die an Humidität gebundenen Wälder mussten regional offenen Landschaften weichen: Es entwickelten sich in der Folge tropische Grasländer (Savannen), Halbwüsten und Wüsten, in den Außertropen die Steppen und andere Trockengebietsformen. Diese Entwicklung vollzog sich vor allem ab dem Mittleren Miozän (Tab. 2): Vor etwa 16 Mio. Jahren wuchs in der Ost-Antarktis ein bis heute persistentes Inlandeis auf; der Aufbau der marinen Psychrosphäre dürfte damals abgeschlossen gewesen sein. Spätestens seit dem Miozän beeinflussen die zugehörigen kalten Auftriebswässer (Benguela-Strom) die südwestafrikanische Küste und verursachen deren extreme Trockenheit.

Die Aridisierung des südlichen Afrika lässt in der Folge auf der Basis des tertiären Tsondab-Sandsteins (Proto-Namib) den Namib-Erg entstehen. Verbunden mit den kalten antarktischen Meeresströmungen und einer seit Jahrmillionen herunter gekühlten Atmosphäre dürften die Namib und die Atacama mit 8 – 10 Mio. Jahren die ältesten Wüstenbildungen der Neuzeit sein. Ein weiterer Schritt in der troposphärischen Entwicklung und damit auch in der Geschichte der Wüsten setzt mit der Schließung der Meerenge von Panama vor ca. 3,5 Mio. Jahren ein: Die neuen Strömungsverhältnisse führten jetzt wärmere Wassermassen nach Norden (Golfstrom) und damit feuchte Luft, die höhere (Schnee-)Niederschläge mit sich brachte und damit möglicherweise die vor etwa 2,6 Mio. Jahren einsetzende Vereisung auf der Nordkalotte beschleunigte.

Anmerkung: Mit dem Verdängen der Wälder und Einzug offener Landschaften wie Savannen, Steppen oder Wüsten erhielt auch die Primaten- und Menschheitsentwicklung Impulse durch den klimatisch bedingten Landschaftswandel der jüngsten Jahrmillionen. Die Bewegung durch (ungewohntes) Grasland dürfte die Primaten und Frühmenschen regelrecht zum aufrechten Gang genötigt haben. Hinzu kommt ein völlig geändertes, vielseitiges Nahrungsspektrum, das ebenfalls evolutionäre Prozesse ausgelöst oder beschleunigt haben dürfte. Savannen und andere offene Landschaftstypen haben die Migration aus Afrika und damit die Ausbreitung der Hominiden im eurasischen Teil der Welt maßgeblich gefördert.

Die Mehrzahl der Wüsten in der Alten wie in der Neuen Welt sind jedoch offensichtlich erdgeschichtlich recht junge Wüsten, die vor etwa 1 – 1,5 Mio. Jahren entstanden. Ihre Ausprägung, ihre flächenmäßigen Schwankungen stehen unzweifelhaft mit der jüngsten klimageschichtlichen Entwicklung in Zusammenhang – dem Beginn des Quartärs (Eiszeitalter; Tab. 2): Bis vor etwa 1,8 Mio. Jahren ist die irdische Atmosphäre thermisch soweit abgesenkt, dass die Milankovich-Parameter (Erdumlaufbahn, Schiefe der Ekliptik, Exzentrizität) greifen und den bekannten zyklischen Wechsel von Kalt-/Eiszeiten und Warmzeiten einleiten. Trockengebiete und Wüsten dehnen sich phasenweise in den Kalt-/Eiszeiten aus, während sie in den Warmzeiten aufgrund höherer Niederschläge und des damit verbundenen Vorrückens von Steppen, Savannen und Wäldern schrumpfen. Allein in den letzten 104 oder 103 Jahren veränderten sich die Vegetationsformationen aller Ökozonen mehrfach und beträchtlich. Damit ist die Ursache der Wüstenbildung zu beträchtlichen Teilen mit der Variation der atmosphärischen Zirkulation und der temperaturabhängigen Niederschlagsgenese verbunden.

Auch der verstärkte Niederschlag in angrenzenden Regionen dokumentiert sich z. B. in Form endorhëischer Flüsse: Ein eindrucksvolles Beispiel hierfür ist die wechselvolle Geschichte des Tschadsees in der Südsahara, der – heute nur noch ein kümmerlicher Rest von 0 – 24 000 km2 Fläche – zeitweilig zu einem „Mega-Tschadsee“ von ~340 000 km2 wird, während sich die umgebende Wüste in eine Art Savanne entwickelt, insbesondere entlang der auflebenden Wasserläufe und in den Beckenlagen. Sie erhält nun autochthone Niederschläge, die das Einzugsgebiet des Sees beträchtlich erweitern (Pachur & Altmann 2006; Busche 1998).

Andererseits belegen weitflächige, heute bewachsene Längsdünen-Felder in der Sahel-Zone, in der Kalahari oder in Australien ein noch wesentlich trockeneres Klima, als es heute herrscht. Die heutigen Voll- und Extremwüsten waren allein in den letzten 20 000 Jahren mehrfach drastischen Klimaschwankungen ausgesetzt, die ihren Status als Wüste noch verstärkten oder sie zu Steppen- bzw. Savannen-Landschaften transformierten. Näheres dazu findet sich in den jeweiligen regionalen Wüstenbeschreibungen oder in den nachfolgenden Beispielen.

3.2 Zur Geschichte der Wüste Namib

Die Geschichte der wohl ältesten (Küsten-)Wüste, der Namib, aufzudecken, ist ein schwieriges Unterfangen, da weitaus weniger geo- und biowissenschaftliche Archive wie limnische Ablagerungen, Fossilien oder Artefakte zur Gewinnung von Proxydaten und absoluten Altersbestimmungen existieren als z. B. von der Sahara. Manche Befunde werden widersprüchlich eingeordnet und paläoklimatisch interpretiert (z. B. Eitel et al. 2005, Eitel & Zöller 1995 versus Heine 2000, 2002). Hinzukommt eine spezifische Lage im Raum und geomorphologische Ausgestaltung, an der auch von außen kommende Flussläufe beteiligt sind (vgl. Kap. 12.2.4).

Folgende Stadien der Geschichte der Namib lassen sich ausgliedern:

 Ihr Minimalalter beträgt 7 bis 10 Mio. Jahre und ist im Zusammenhang mit der oben angeführten Antarktis-Vereisung zu sehen, d. h. mit der Bildung der Psychrosphäre (ozeanische Thermokline), der thermohalinen Zirkulation und des Benguela-Kaltwasserstroms. Tertiäre Ablagerungen des Kalahari-Beckens, die durch Schichtfluten (semi-arides Klima) aufgebaut wurden, sind von pedogenen Kalkkrusten überlagert. Darin eingeschlossen ist das Tonmineral Palygorskit, das unter semi-humiden und humiden Bedingungen in Smectit umgewandelt wird (Eitel 1993) – ein Indikator für seither anhaltendes Trockenklima. Weitere Hinweise auf ein mittel- oder jung-tertiäres Alter (Tab. 2) der Namib lieferten Datierungen an der Karpfenkliff-Formation und ihren Decksedimenten.

 Das Maximalalter der Namib ist weiterhin umstritten. Der unter der Dünen-Namib (Erg) lagernde Tsondab-Sandstein (eine der Sandquellen für den späteren Erg) wird als Proto-Namib angesehen, aber mit unterschiedlichen stratigraphischen Zuordnungen. Die Ansichten über seine Sedimentation reichen vom Mesozoikum bis in das Unter-Miozän (s. Disk. in Hüser et al. 2001). Eitels Untersuchungen (1999) an intensiv chemisch verwitterten Substraten in der nördlichen Namib zufolge herrschte warmes und semi-humides Klima ab der Kreidezeit bis in das Miozän hinein (s. Tab. 2).

 Die Namib im Quartär: Über das Früh- und Mittel-Quartär ist landschaftsgeschichtlich wenig bekannt – Spuren von Reliefgeneration sind kaum auszumachen. Für eine lange, über 700 000 Jahre durchgehende Existenz der Benguela-Strömung, und damit auch der Küstenwüste, sprechen Untersuchungen an benthischen Foraminiferen. Dabei sind Fluktuationen in der Intensität des Kaltwasserauftriebs nicht ausgeschlossen. Zumindest sind in den letzten 100 000 Jahren zwei Abschwächungsphasen von jeweils mehr als 10 000 Jahren nachzuweisen (s. Eitel 2005). Uran/Thorium-Datierungen an Stalagmiten in der Rössing-Höhle belegen das Fehlen einer Feuchtperiode in der Zentral-Namib während des letzten Glazialzyklus’ ab 125 000 Jahren vor heute (Heine 1998).

 Jungquartär: Für den jüngsten glazialen Zyklus fehlen verlässliche Zeugnisse zur Klima- und Reliefgeschichte. Lediglich über das letzte Hochglazial (LGM) besteht weitgehend Einigkeit in den Befunden: Um 20 000 J.v.h. herrschte im südwestlichen Afrika eine sehr trockene Periode. Im Namib-Erg formierten sich die noch heute herausragenden Großdünenformen und -muster. Wie aus Abb. 5 ersichtlich, bleibt die extreme Küstenwüste Namib auch über das Spätglazial und Holozän hinweg konstant. Dafür sprechen auch mächtige Gipskrustenbildungen (Heine & Walter 1996). Demgegenüber reagieren aber der Ostteil, der Wüstenrand und das Hinterland der Namib auf Veränderungen der monsunalen Reichweite und Intensität, was Eitel (1993) über Kalkkrustengenerationen nachzuweisen versucht. Diese benötigen für ihre Anlage wiederholte Phasen von Trockenheit und zunehmender Feuchte. Auch das Hinterland der Namib war im LGM eine Wüste. Davon zeugen Dünenfelder im Inland des heutigen Namibia, die aber etwa ab 14 000 J.v.h. durch Vegetation fixiert wurden (Eitel et al. 2002).

 Spätglazial und Holozän: Im Bereich der Kalahari endete die Längsdünenformung zwischen 8000 und 9000 Jahren vor heute mit dem Einzug feuchterer Klimabedingungen und der damit verbundenen Vegetationsausbreitung (Eitel & Blümel 1997). Etwa zur selben Zeit kam im Bereich Damaraland und Kaokoveld die Sedimentation und Umlagerung von Silten zum Erliegen (stv. Eitel et al. 2001). Deren Ausräumung begann mit der mittel-holozänen Feuchtperiode, die wiederum vor ca. 4000 Jahren zu Ende ging und in den gegenwärtigen Klimazustand überleitete. In der Folgezeit oszillierte das Abflussverhalten in den Wüstenrandbereichen (s. Eitel et al. 2005b). Auch aus frühgeschichtlicher Sicht gibt es Hinweise auf holozäne klimatische Fluktuationen: Am Mirabib-Inselberg fernab von Trockenflussläufen im Wüstenzentrum (Foto 35) finden sich in Abris Kulturschichten, die eine Feuchtperiode zwischen 8000 und 5000 Jahren vor heute signalisieren. Aus der nachfolgenden, wieder trockeneren Phase (3000 – 2000 J.v.h.) stammen Wüstenrandlösse und die jungen Lunette-Dünen am Westrand der Etosha-Pfanne (Buch et al. 1992). Der Namib-Rand dehnte sich wieder weiter nach Osten aus.

Die Verlagerung des Wüstenrandes, die fluktuierende Ausweitung bzw. Schrumpfung des Kernwüstenareals lässt sich auch durch die heute noch in der Extremwüste persistente Savannenpflanze Welwitschia mirabilis untermauern (Kap 7.1.5; 12.2.5). Weitere Indikatoren für Änderungen am Namib-Grenzsaum stehen zwangsläufig mit hygrischen Schwankungen des Hinterlandes in Zusammenhang. Von dort aus ziehen Fremdlingsflüsse wie der Hoanib in die Wüste. Letzterer hinterließ dort Flussauslaufsedimente als möglicher Indikator für abnehmende Niederschläge während der Kleinen Eiszeit (Kap. 12.2.4). Postsedimentär bis heute werden sie wieder ausgeräumt – ein Zeichen zumindest für Klimafluktuationen am Wüstenrand, aber nicht zwangsläufig auch in der Wüste selbst. Der Küstenwüstenstreifen mit seiner Breite von einigen Zehnern Kilometern scheint über den Zeitraum des Quartärs hinweg in seinem extremen Charakter unverändert geblieben zu sein.

1 152,42 ₽

Жанры и теги

Возрастное ограничение:
0+
Объем:
524 стр. 125 иллюстраций
ISBN:
9783846338827
Издатель:
Правообладатель:
Bookwire
Формат скачивания:
Аудио
Средний рейтинг 4,2 на основе 370 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,3 на основе 488 оценок
По подписке
Аудио
Средний рейтинг 4,6 на основе 686 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,3 на основе 986 оценок
Аудио
Средний рейтинг 4,7 на основе 1826 оценок
Текст, доступен аудиоформат
Средний рейтинг 5 на основе 439 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,7 на основе 1027 оценок
Аудио
Средний рейтинг 5 на основе 428 оценок
Черновик
Средний рейтинг 5 на основе 144 оценок
Текст
Средний рейтинг 0 на основе 0 оценок