Обезьяны, нейроны и душа

Текст
Из серии: Династия (Corpus)
28
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Обезьяны, нейроны и душа
Обезьяны, нейроны и душа
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 828  662,40 
Обезьяны, нейроны и душа
Обезьяны, нейроны и душа
Аудиокнига
Читает Геннадий Смирнов
449 
Подробнее
Шрифт:Меньше АаБольше Аа

Чем мозг отличается от компьютера

Некоторые отличия мы уже знаем. В компьютере все сигналы, которыми обмениваются элементы логических схем, имеют одну и ту же природу – электрическую, и сигналы эти могут принимать только одно из двух значений – 0 или 1. Передача информации в мозге основана не на двоичном коде, а скорее на троичном. Если возбуждающий сигнал соотнести с единицей, а его отсутствие – с нулем, то тормозящий сигнал, пожалуй, можно уподобить минус единице. Но это все-таки чрезмерное упрощение. На самом деле в мозге используются химические сигналы нескольких десятков типов – все равно как если бы в компьютере использовались десятки разных электрических токов (или наряду с электричеством использовались световые лучи, струйки воды, зубчатые передачи, потоки воздуха и много всего другого), а нули и единицы могли бы иметь десятки разных… ну, скажем, цветов или каких-то иных качеств.

В принципе можно представить себе мозг, работающий только на одном нейромедиаторе. Или на двух – одном возбуждающем и одном тормозящем. Но тогда пришлось бы обходиться без нейромодуляторов и без внесинаптической передачи. Выброс универсального нейромедиатора во внеклеточное пространство и его восприятие внесинаптическими рецепторами в таком мозге были бы похожи на короткое замыкание. Без возможности выбрасывать разные медиаторы по выбору внесинаптическая передача потеряла бы смысл. Значит, все логические схемы пришлось бы четко и однозначно «прошивать» в железе, то есть фиксировать в системе синаптических связей. Это создало бы технические трудности при кодировании таких «общесистемных» сигналов (или настроек), как эмоции. Это создало бы еще более серьезные проблемы с гормональной регуляцией жизнедеятельности, поскольку гормональная регуляция – естественное продолжение нервной. Многие нейромедиаторы по совместительству являются и важнейшими гормонами (Жуков, 2007). Ко всем органам, работа которых управляется гормонами, пришлось бы «тянуть» дополнительные нервы – и это только одна из проблем.

Я готов допустить, что эти трудности преодолимы. Не исключено, что где-то на других планетах живут существа с мозгом, работающим на двух медиаторах. Но на нашей планете множественность нейромедиаторов является для нас, животных, очень древним эволюционным наследием, которое тянется за нами с тех незапамятных времен (более 700 млн лет назад), когда у примитивных многоклеточных еще не было нормальной нервной системы с синапсами, а клетки общались между собой при помощи разнообразных химических сигналов. Химическая регуляция взаимоотношений между клетками эволюционно гораздо древнее, чем нервная система. Многие нейромедиаторы и нейрогормоны пришли к нам прямиком из эпохи первых многоклеточных или даже из еще более ранней эпохи социальных одноклеточных – предков животных. Задолго до того, как некоторые из клеток стали нейронами, клетки уже общались между собой при помощи тех же самых нейромедиаторов и гормонов, которые и поныне используются в нервно-гормональной системе высших животных.

Еще одно ключевое отличие мозга от компьютера связано с тем, что сила сигнала, передаваемого от одного нейрона к другому (количество выделенного нейромедиатора), может меняться не дискретно (0 или 1), а плавно. Дискретность распространяется только на факт наличия или отсутствия сигнала – выброшенной нервным окончанием порции нейромедиатора, но не на размер этой порции. Плавно может меняться и чувствительность принимающего нейрона к сигналам, поступающим через данный синапс. Эта чувствительность зависит от количества и качества рецепторов, сидящих на постсинаптической мембране принимающего нейрона.

Самое же главное отличие состоит в том, что проводимость каждого конкретного синапса (определяемая количеством нейромедиатора, поступающего через пресинаптическую мембрану, и чувствительностью постсинаптической мембраны к этому нейромедиатору) может меняться в зависимости от обстоятельств. Это свойство называют синаптической пластичностью. Именно синаптическая пластичность лежит в основе способности комплексов взаимосвязанных нейронов (нейронных контуров или сетей) к запоминанию и обучению.

Есть и еще одно радикальное отличие мозга от электронно-вычислительной машины. В компьютере основной объем памяти хранится не в логических электронных схемах процессора, а отдельно, в специальных запоминающих устройствах. В мозге вся память записана в той же самой структуре межнейронных синаптических связей, которая одновременно является и грандиозным вычислительным устройством – аналогом процессора. Участков мозга, специально выделенных для длительного хранения воспоминаний, не существует. Мы помним лицо знакомого человека теми же самыми нервными клетками, которые это лицо воспринимают и распознают.

Запоминающее устройство можно собрать из трех нейронов

Нам пора поближе познакомиться с устройством памяти. Расшифровка ее клеточно-молекулярной природы – одно из самых блестящих достижений нейробиологии xx века. Нобелевский лауреат Эрик Кандель и его коллеги сумели показать, что для формирования самой настоящей памяти – как кратковременной, так и долговременной – достаточно всего трех нейронов, определенным образом соединенных между собой.

Память изучалась на примере формирования условного рефлекса у гигантского моллюска – морского зайца Aplysia. У этого моллюска нервная система очень проста и удобна для изучения – нейронов в ней мало, и они очень крупные. Моллюску осторожно трогали сифон и тотчас вслед за этим сильно били по хвосту. После такого однократного «обучения» моллюск некоторое время реагирует на легкое прикосновение к сифону бурной защитной реакцией, но вскоре все забывает (кратковременная память). Если «обучение» повторить несколько раз, формируется стойкий условный рефлекс (долговременная память).

Оказалось, что процесс запоминания организован довольно просто и сводится к ряду автоматических реакций на уровне отдельных нейронов. Весь процесс можно полностью воспроизвести на простейшей системе из трех изолированных нервных клеток. Один нейрон (сенсорный) получает сигнал от сифона (в данном случае – чувствует легкое прикосновение). Сенсорный нейрон передает импульс моторному нейрону, который в свою очередь заставляет сокращаться мышцы, участвующие в защитной реакции (Aplysia втягивает жабру и выбрасывает в воду порцию красных чернил). Информация об ударе по хвосту поступает от третьего нейрона, который в данном случае играет роль модулирующего.

Гигантский морской моллюск аплизия.


На рисунке показаны два синапса. Первый служит для передачи импульса от сенсорного нейрона к моторному. Второй синапс передает импульс от модулирующего нейрона к окончанию сенсорного.

Возьмем необученного, «наивного» моллюска. Если в момент прикосновения к сифону модулирующий нейрон «молчит» (по хвосту не бьют), в синапсе 1 выбрасывается мало нейромедиатора, и моторный нейрон не возбуждается.

Однако удар по хвосту приводит к выбросу нейромедиатора в синапсе 2, что вызывает важные изменения в поведении синапса 1. В окончании сенсорного нейрона вырабатывается сигнальное вещество цАМФ (циклический аденозинмоно-фосфат). Это вещество активирует регуляторный белок – протеинкиназу А. Протеинкиназа А в свою очередь активирует другие белки, что в конечном счете приводит к тому, что синапс 1 при возбуждении сенсорного нейрона (то есть в ответ на прикосновение к сифону) начинает выбрасывать больше нейромедиатора, и моторный нейрон возбуждается. Это и есть кратковременная память: пока в окончании сенсорного нейрона много активной протеинкиназы А, передача сигнала от сифона к мышцам жабры и чернильного мешка осуществляется более эффективно.


За эту картинку Эрику Канделю дали Нобелевскую премию. Здесь показано, как в простейшей системе из трех нейронов формируется кратковременная и долговременная память.


Если прикосновение к сифону сопровождалось ударом по хвосту много раз подряд, протеинкиназы А становится так много, что она проникает в ядро сенсорного нейрона. Это приводит к активизации другого регуляторного белка – транскрипционного фактора CREB. Белок CREB «включает» целый ряд генов, работа которых в конечном счете приводит к разрастанию синапса 1 (как показано на рисунке) или к тому, что у окончания сенсорного нейрона вырастают дополнительные отростки, которые образуют новые синаптические контакты с моторным нейроном. В обоих случаях эффект один: теперь даже слабого возбуждения сенсорного нейрона оказывается достаточно, чтобы возбудить моторный нейрон. Это и есть долговременная память.

Остается добавить, что, как показали дальнейшие исследования, у других животных, включая нас с вами, память основана на тех же принципах, что и у аплизии. Память – это проторенные дороги в нейронных сетях. Это пути, по которым нервные импульсы проходят легче благодаря повышенной синаптической проводимости.

Когда мы воспринимаем что-нибудь – любую информацию из внешней или внутренней среды, – нервные импульсы пробегают по каким-то определенным путям в гигантской нейронной сети, которой является наш мозг. Логические схемы, составленные из множества нейронов, обрабатывают поступающие сигналы, обобщают их, раскладывают по полочкам. Например, зрительная информация – нервные импульсы, приходящие от фоторецепторов сетчатки глаза, – сначала сортируется по простым категориям: вертикальные линии, горизонтальные линии, данные о движении и т. д. Затем постепенно, в несколько этапов, передаваясь от одних групп нейронов другим, из этих элементов складывается целостный образ увиденного, «картинка», удобная модель реальности, с которой можно работать дальше. На основе хорошей, качественной картинки-модели[18] можно просчитать оптимальную тактику своего поведения, то есть последовательность нервных импульсов, которые нужно послать мышцам, чтобы совершить нужные телодвижения. Например, убежать как можно быстрее и дальше, если распознанная «картинка» идентифицирована как нечто опасное – скажем, крупный хищник. Физическая природа «картинки», как и всего остального, что происходит в нашей душе, – это определенный рисунок (паттерн) возбуждения нейронов, все те же нервные импульсы, пробегающие по определенным путям в сплетениях аксонов и дендритов. Чтобы надолго запомнить данную картинку – скажем, тигриную морду, выглянувшую из-за пальмы, – нужно просто усилить синаптическую проводимость вдоль всего пути следования импульсов, формирующих именно эту картинку. И тогда достаточно будет легкого напоминания – запах, шорох, пара полосок, желтый глаз, – и по проторенному пути сразу пробегут такие же нервные импульсы, как при первой встрече. Возникнет мысленный образ тигра.

 

Мы рождаемся не с кашей в голове. Мы рождаемся с нейронами мозга, уже каким-то образом соединенными между собой в громадную, сложнейшую сеть. Каким именно образом они соединятся в процессе эмбрионального развития, зависит от генов. Какие из бессчетного множества возможных путей для прохождения нервных импульсов будут от рождения более проторенными, чем другие, тоже зависит от генов. Из этого неизбежно следует, что по крайней мере некоторые наши знания вполне могут быть врожденными. Для того чтобы от рождения иметь в голове образ тигра – обладать врожденным знанием о том, как выглядит тигр, – нужно лишь одно. Нужно, чтобы отбор закрепил в нашем геноме такие мутации генов – регуляторов развития мозга, которые от рождения обеспечивали бы повышенную синаптическую проводимость вдоль того пути следования нервных импульсов, по которому они пробегали при встрече с тигром у наших предков, еще не имевших этого врожденного знания.

Разумеется, знания могут быть не полностью, а лишь отчасти врожденными. Это значит, что соответствующий нейронный маршрут будет от рождения проторен лишь отчасти, недостаточно сильно или не на всем протяжении. Тогда нужно будет немного «довести» врожденное полузнание при помощи обучения. Частичная врожденность, конечно, делает обучение гораздо более легким и быстрым.

По всей видимости, у людей действительно есть кое-какие врожденные «заготовки» зрительных образов: например, новорожденные дети иначе реагируют на вертикальный овал с большой буквой Т посередине (похоже на лицо), чем на другие геометрические фигуры. Удивительная легкость, с которой маленькие дети овладевают речью, тоже объясняется наличием некоего врожденного «полузнания», то есть предрасположенности к легкому усвоению знаний определенного рода.

Могут существовать и такие знания, которым очень трудно или даже вовсе невозможно научиться, потому что врожденная структура межнейронных связей не предусматривает такой возможности. Скажем, в вышеприведенном примере с аплизией мы приняли как данность, что модулирующий нейрон, возбуждающийся при ударе по хвосту, имеет аксонный отросток, контактирующий с окончанием сенсорного нейрона, реагирующего на прикосновение к сифону. А если бы такого отростка не было, если бы модулирующий нейрон не имел синаптических контактов с окончанием сенсорного нейрона? Или, иными словами, если бы врожденная структура нейронной сети аплизии не предусматривала возможности передачи сигнала от хвоста к окончанию сенсорного нейрона сифона? В таком случае аплизия оказалась бы не способной к данному виду обучения. Мы просто не смогли бы посредством ударов по хвосту научить ее выбрасывать чернила в ответ на прикосновение к сифону. Скорее всего, в этом случае мы сумели бы найти ударам по хвосту какую-то замену. Мы подобрали бы такое «обучающее воздействие», которое возбуждало бы нейроны, имеющие (в отличие от нейронов хвоста) синаптические контакты с окончаниями сенсорных нейронов сифона.

Нейроны мозга от рождения соединены между собой лишь каким-то одним способом из бесконечного числа возможных. Из этого следует, что любое животное, включая человека, чему-то научиться может, а чему-то нет. Одни науки даются нам легко, другие трудно. Абсолютно универсальных мозгов не бывает. Любой мозг специализирован, «заточен» под решение определенного – пусть и очень широкого – круга задач. Он принципиально не способен решать задачи, лежащие за пределами этого круга. Возможно, человеческий мозг более универсален, чем мозги других животных, но абсолютная универсальность – не более чем несбыточная мечта.

Нейроны соревнуются за право запоминать

Часто бывает так, что одни и те же важные сигналы, подлежащие запоминанию, принимаются одновременно очень многими нейронами. Нужно ли им всем участвовать в запоминании? На первый взгляд кажется, что это не слишком рационально. Ведь количество проторенных путей, которые может пропустить через себя один и тот же нейрон, ограничено – объем памяти не бесконечен. Сэкономить и записать важную информацию только в части задействованных нейронов – вроде бы неплохая идея. Как недавно выяснилось, именно это и происходит в мозге млекопитающих. Нейронам, воспринимающим одну и ту же достойную запоминания информацию, как-то удается договориться между собой, кто из них будет, а кто не будет отращивать себе новые отростки и синапсы.

Это явление описали канадские и американские нейробиологи, изучавшие формирование у лабораторных мышей условных рефлексов, связанных со страхом (Han et al., 2007). Простейшие рефлексы такого рода и у мышей, и у людей, и у всех прочих млекопитающих формируются в латеральной миндалине (ЛМ) – маленьком отделе мозга, отвечающем за реакции организма на всякие пугающие стимулы. Мышей приучали, что после того, как раздается определенный звук, их бьет током. В ответ на удар током мышь замирает: это стандартная реакция на испуг. Мыши – умные зверьки, их можно научить многому, и условные рефлексы у них формируются быстро. Обученные мыши замирают, едва заслышав звук, предвещающий опасность.

Ученые обнаружили, что сигнал от нейронов, воспринимающих звук, поступает примерно в 70 % нейронов латеральной миндалины. Однако изменения, связанные с формированием долговременной памяти (разрастание синапсов и рост новых нервных окончаний), у обученных мышей происходят лишь в четвертой части этих нейронов (примерно у 18 % нейронов ЛМ).

Ученые предположили, что между нейронами ЛМ, потенциально способными принять участие в формировании долговременной памяти, происходит своеобразное соревнование за право отрастить новые синапсы, причем вероятность «успеха» того или иного нейрона зависит от концентрации белка CREB в его ядре. Чтобы проверить это предположение, мышам делались микроинъекции искусственных вирусов, не способных к размножению, но способных производить полноценный белок CREB либо его нефункциональный аналог CREBS133A. Гены обоих этих белков, вставленные в геном вируса, были «пришиты» к гену зеленого флуоресцирующего белка медузы. В итоге ядра тех нейронов ЛМ, в которые попал вирус, начинали светиться зеленым.

Выяснилось, что в результате микроинъекции вирус проникает примерно в такое же количество нейронов ЛМ, какое участвует в формировании условного рефлекса. Это случайное совпадение оказалось весьма удобным.

Помимо нормальных мышей в опытах использовались мыши-мутанты, у которых не работает ген CREB. Такие мыши напрочь лишены способности к обучению, они ничего не могут запомнить. Оказалось, что введение вируса, производящего CREB, в ЛМ таких мышей полностью восстанавливает способность к формированию условного рефлекса. Но, может быть, увеличение концентрации CREB в некоторых нейронах ЛМ просто усиливает реакцию замирания?

Чтобы проверить это, были поставлены опыты с более сложным обучением, в которых мышь должна была «осознать» связь между звуком и ударом тока не напрямую, а опосредованно, причем для этого требовалось запомнить определенный контекст, в котором происходило обучение. Для этого недостаточно работы одной лишь ЛМ, а требуется еще и участие гиппокампа. В такой ситуации мыши-мутанты не смогли ничему научиться, ведь в гиппокамп[19] им вирусов не вводили. Следовательно, концентрация CREB влияет именно на запоминание, а не на склонность к замиранию.

При помощи дополнительных экспериментов удалось доказать, что в запоминании у мышей-мутантов участвуют именно те нейроны ЛМ, которые заразились вирусом. Введение вируса в ЛМ здоровых мышей не повлияло на их обучаемость. Однако, как и в случае с мышами-мутантами, в запоминании участвовали именно те нейроны ЛМ, в которые попал вирус.

Другой вирус, производящий CREBS133A, лишает зараженные нейроны способности запоминать, то есть отращивать новые окончания. Ученые предположили, что введение этого вируса в ЛМ здоровых мышей не должно тем не менее снижать их обучаемость, поскольку вирус заражает лишь около 20 % нейронов ЛМ и роль «запоминающих» возьмут на себя другие, не заразившиеся нейроны. Так и оказалось. Мыши обучались нормально, но среди нейронов, принявших участие в запоминании, практически не оказалось зараженных (то есть светящихся зеленым светом). Ученые провели еще целый ряд сложных экспериментов, что позволило исключить все иные варианты объяснений, кроме одного – того самого, которое соответствовало их начальному предположению.

Таким образом, в запоминании участвуют не все нейроны, получающие необходимую для этого информацию (в данном случае – «сенсорную» информацию о звуке и «модулирующую» – об ударе током). Почетную роль запоминающих берет на себя лишь некоторая часть этих нейронов, а именно те, в ядрах которых оказалось больше белка CREB. Это, в общем, логично, поскольку высокая концентрация CREB в ядре как раз и делает такие нейроны наиболее «предрасположенными» к быстрому отращиванию новых окончаний.

Неясным остается механизм, посредством которого другие нейроны узнают, что дело уже сделано, победители названы и им самим уже не нужно ничего себе отращивать.

Этот механизм может быть довольно простым. Аналогичные системы регуляции, основанные на отрицательных обратных связях, часто встречаются в живой природе. Например, у нитчатых цианобактерий, нити которых состоят из двух типов клеток: обычных, занимающихся фотосинтезом, и специализированных гетероцист, занимающихся фиксацией атмосферного азота. Система работает очень просто: когда сообществу недостает азота, фотосинтезирующие клетки начинают превращаться в гетероцисты. Процесс до определенного момента является обратимым. Клетки, зашедшие по этому пути достаточно далеко, начинают выделять сигнальное вещество, которое не дает превратиться в гетероцисты соседним клеткам. В результате получается нить с неким вполне определенным соотношением обычных клеток и гетероцист (например, 1:20), причем гетероцисты располагаются примерно на равном расстоянии друг от друга.

На мой взгляд, называть подобные регуляторные механизмы конкуренцией, как это делают авторы статьи, не совсем правильно, акцент тут должен быть иной. Нейрон не получает никакой личной выгоды от того, что именно он примет участие в запоминании. По-моему, здесь уместнее говорить не о конкуренции, а о кооперации.

 
Томография мозга

Для изучения работы мозга используется множество методов, каждый из которых, как водится, имеет свои плюсы и минусы и свою область применения. Если вы работаете с аплизиями, мышами или мухами, можно использовать любые методы. Хотите – создавайте генно-модифицированных животных со светящимися нейронами, которые можно разглядывать сквозь череп при помощи специального микроскопа, хотите – втыкайте микроэлектроды в интересующие вас нейроны и регистрируйте нервные импульсы, хотите – нарежьте мозг тонкими ломтиками и изучайте работу нейронов и проводимость синапсов, пока клетки еще живые (делают и так). Мышей, правда, жалко.

С обезьянами, включая человека, так поступать нельзя. Здесь генно-инженерные методы запрещены, равно как и сверление отверстий в черепе в научных целях. И тут на помощь приходят неинвазивные (то есть не требующие непосредственного вмешательства в мозг) методы. Они, как правило, совершенно (или почти) безвредны, а некоторые из них позволяют наблюдать за работой мозга в реальном времени. Наиболее интересные результаты дают различные виды компьютерной томографии, позволяющие получать объемные изображения мозга (или других органов) путем компьютерной обработки множества послойных снимков. Рентгеновская томография применяется для изучения анатомии мозга. Позитронно-эмиссионная томография (ПЭТ), часто применяемая совместно с рентгеновской, позволяет отслеживать участки мозга, наиболее активные в данный момент. Для этого человеку или другому животному вводят в кровь небольшое количество радиоактивного элемента (такого как фтор-18), который при распаде излучает позитроны. Позитроны сталкиваются с электронами и аннигилируют, испуская два гамма-кванта. Их-то и регистрирует прибор. Когда какой-то участок мозга начинает активно работать, к нему приливает больше крови. Соответственно, там становится больше радионуклидов и оттуда вылетает больше гамма-квантов. Звучит все это довольно устрашающе, но на самом деле процедура вполне безвредна, поскольку используемые количества радионуклидов ничтожны. Функциональная магнитно-резонансная томография (ФМРТ) позволяет обойтись и без рентгеновского излучения, и без введения радионуклидов: дело ограничивается тем, что голову помещают в мощное магнитное поле и пропускают сквозь нее радиоволны. Как и ПЭТ, данный метод регистрирует приток крови к активно работающим участкам мозга. Только этот приток определяется не по радионуклидам, а по оксигемоглобину (гемоглобину, соединенному с кислородом): чем больше в данном участке мозга оксигемоглобина, тем сильнее магнитно-резонансный сигнал.

Разрешение у всех этих методов, конечно, меньше, чем у воткнутых прямо в мозг электродов. Работу отдельных нейронов по томограммам проследить нельзя, да и приток крови к активным участкам мозга происходит не мгновенно. Тем не менее компьютерная томография – превосходный инструмент для выяснения вопроса о том, какие участки мозга задействованы в тех или иных видах психической активности.

18Животные, чей мозг делает некачественные, лживые модели реальности, отсеиваются отбором. Это позволяет нам надеяться, что большинство наших представлений об окружающем мире более-менее правдивы (см. главу «Происхождение человека и половой отбор», кн. 1). Впрочем, для отбора важна не истинность модели, а лишь ее практичность. Если способность в каких-то ситуациях обманываться (не случайным, конечно, а неким вполне определенным образом) повышает репродуктивный успех, такая способность будет поддержана отбором, и мы будем систематически обманываться. Например, для выживания палеолитическому человеку незачем было понимать, что скалы в основном состоят из пустоты. С такой «чрезмерно правдивой» моделью реальности недолго и голову расшибить. Поэтому мы воспринимаем камни как непроницаемые, сплошные, плотные объекты. Что не совсем правдиво с точки зрения физики, зато очень практично.
19Гиппокамп – часть так называемой лимбической системы мозга. Выполняет несколько важных функций, включая управление запоминанием пережитых событий. В том числе – путем многократного «прокручивания» дневных воспоминаний во время сна. Люди с удаленным гиппокампом помнят все, что было с ними до операции, но не могут запомнить ничего нового (см. ниже).
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»