ДНК и её человек. Краткая история ДНК-идентификации

Текст
6
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 998  798,40 
ДНК и её человек
ДНК и её человек
Аудиокнига
Читает Мария Ермакова
549 
Синхронизировано с текстом
Подробнее
Шрифт:Меньше АаБольше Аа

Новое поколение выбирает…

В современных научных статьях по исследованию ДНК часто можно встретить аббревиатуру NGS. Это расшифровывается как next generation sequencing, методы секвенирования нового поколения – собирательное название для новейших методов, не использующих cенгеровскую терминацию. Все они появились после двухтысячного года, все требуют довольно сложного оборудования и программного обеспечения. Для большинства из них ДНК надо сначала фрагментировать – порезать на фрагменты в несколько сотен нуклеотидов, а затем состыковывать прочтенные кусочки текста в единую последовательность. Часто NGS называют также “высокопроизводительным”, или “параллельным”, секвенированием, потому что одновременно читается множество кусочков ДНК.

Подробно про каждый метод рассказывать не будем, только общий принцип в двух словах.

Пиросеквенирование основано на двух фактах: 1) ДНК-полимераза присоединяет к растущей цепочке только комплементарный нуклеотид, некомплементарные присоединять отказывается; 2) когда нуклеотид занимает свое место, отщепляется пара фосфатных групп – пирофосфат (если интересует химическая сторона вопроса, посмотрите на рисунок про секвенирование). Через ячейку, в которой находится секвенируемый фрагмент ДНК, поочередно прокачивают растворы четырех нуклеотидов. Когда приходит нужная буква, пирофосфат отщепляется и запускает каскад реакций с выделением кванта света. Вспышка регистрируется, буква записывается, начинается следующий цикл.

Секвенирование Solexa (Illumina) – то есть технология, разработанная в компании Solexa, позднее приобретенной компанией Illumina. Она тоже использует рост нуклеотидной цепочки. Каждый нуклеотид при этом несет флуоресцентную метку своего цвета и “заглушку” на 3’ – ОН-группе, временно останавливающую синтез. Нуклеотид присоединился – лазерный импульс заставил метку флуоресцировать – свечение зарегистрировано – специальный реагент удаляет флуоресцентный довесок и заглушку с 3’ – конца – цикл можно повторять.

Ионное полупроводниковое секвенирование, оно же секвенирование Ion Torrent и рН-опосредованное секвенирование, не использует ни меченых нуклеотидов, ни оптических датчиков. Присоединение очередного нуклеотида сопровождается высвобождением не только пирофосфата, но и протона Н+ – вот этот протон, точнее, локальное изменение рН на микрочипе, и регистрируется чувствительным датчиком.


Все эти методы на самом деле требуют присутствия множества копий молекулы-матрицы (и, соответственно, довольно сложной пробоподготовки). Но уже появилось секвенирование единичных молекул ДНК или РНК. Так, одномолекулярное секвенирование в реальном времени, разработанное компанией Pacific Biosciences, позволяет детектировать свечение единичного нуклеотида с флуоресцентной меткой, присоединяемого к цепочке. Важно, что таким методом можно читать очень длинные молекулы – десятки тысяч нуклеотидов, то есть не нужно разрезать ДНК на мелкие кусочки, а потом собирать.

А совсем недавно, всего несколько лет назад, появились приборы, использующие фантастически красивый метод – нанопоровое секвенирование. Это уже секвенирование третьего поколения! Представьте себе реакционную камеру с раствором электролита, разделенную на две части мембраной. В мембране есть маленькая пора, по размеру такая же, как те, через которые молекулы транспортируются в живую клетку. Между двумя половинами камеры имеется разность потенциалов, из-за чего возникает ток ионов через пору. А когда через эту пору проходит молекула ДНК (она проникает туда под действием напряжения, как при электрофорезе, или ее направляет специальный фермент) – тогда азотистые основания А, Т, G, С по-разному перекрывают просвет поры, сила тока падает и снова возрастает, ее колебания можно регистрировать и таким образом получить последовательность нуклеотидов. Своего рода молекулярная морзянка.

Приборы для нанопорового секвенирования продает британская компания Oxford Nanopore Technologies. Совершенствовать эту технологию непросто, уровень ошибок не сразу удалось снизить до приемлемого, но сейчас приборы Oxford Nanopore уже и в космос слетали, и в России появились. Например, многие видели в новостях трогательно маленький “секвенатор-флешку” MinION, подключаемый к ноутбуку через USB, – эта игрушечка может за один запуск секвенировать геном человека с шестикратным покрытием. А рекордная длина прочтения с одной молекулы, как сообщается на сайте компании, – 2,2 млн нуклеотидов. Два миллиона за один проход! Да, это вам не полиакриламидный гель.



Здесь перечислены не все существующие методы. Есть множество их вариаций. Есть еще и полони-секвенирование, оно же лигазное, оно же SOLiD, – коротко объяснить принцип данного весьма полезного метода тут не получится. Есть Nanoball Sequencing, что можно перевести как секвенирование ДНК-наношаров…

В общем, мало кто сомневается, что секвенирование будет становиться все доступнее по цене. Некоторые наши бабушки и дедушки ходили за покупками с дозиметрами и “измерителями содержания нитратов”. Возможно, из наших сверстников получатся ответственные пенсионеры, которые будут брать с собой на рынок портативный секвенатор и, сурово поглядывая на продавца сквозь гугл-очки, проверять подозрительно розовый помидор на присутствие генных модификаций, неизвестных Роспотребнадзору.

Шутки шутками, но современные методы секвенирования в самом скором времени изменят нашу жизнь. (Как именно – тема для отдельной книги.) Технологии NGS позволяют прочесть больше нуклеотидов в единицу времени и за меньшие деньги, в этом смысле прогресс налицо. Тем не менее секвенирование по Сенгеру остается золотым стандартом. Метод Сенгера читает без перерыва более длинные фрагменты с меньшим количеством ошибок. Часто и в современных научных работах можно встретить фразу, что, мол, мы нашли такие-то мутации с помощью NGS и затем подтвердили находку методом Сенгера.

Но еще до того, как секвенирование стало более или менее рутинной задачей – и даже до того, как был начат проект “Геном человека”, и задолго до появления высокопроизводительного секвенирования! – анализ ДНК нашел применение в криминалистике. Теперь нам часто придется забегать вперед и возвращаться назад, в начале 1980-х слишком много интересного происходило одновременно.

ДНК-дактилоскопия сэра Алека Джеффриса

Осенью 1983 г. в английском городке Нарборо графства Лестершир нашли мертвой 15-летнюю Линду Манн. Три года спустя в другом городке под названием Эндерби, недалеко от Нарборо, была изнасилована и задушена 15-летняя Дон Эшворт. Полиция имела основания полагать, что обеих девушек убил один и тот же человек. По второму делу проходил 17-летний подозреваемый, он давал признательные показания, но отрицал, что убил первую девушку. Участвовать в расследовании пригласили генетика Алека Джеффриса из Лестерского университета, создателя нового метода идентификации личности – ДНК-фингерпринта (от fingerprint – отпечаток пальца). Метод позволял сравнивать образцы ДНК и устанавливать, принадлежат ли они одному человеку или разным. Он еще не был испробован в уголовных делах, но как раз подходил для данного случая: следствие располагало образцами биоматериала преступника (то есть спермы), имелся и подозреваемый. Так что скажет наука: он или не он?..

Сын и внук изобретателей

Сэр Алек Джеффрис, член Лондонского королевского общества, лауреат премии Альберта Эйнштейна, Кавалер Почета (этим орденом могут обладать не более 65 ныне живущих граждан Великобритании и Содружества) и т. д. и т. п. – нечасто на профессора генетики проливается такой дождь наград. Причина в том, что с открытия, которое он сделал, началась новая глава в истории криминалистики. Увлекательные попытки угадать, кому принадлежит пятно крови – преступнику, жертве или раненому животному, – уходят в прошлое. Теперь мы можем узнать точно.

Алек Джеффрис родился в 1950 г. Его папа и дедушка по отцовской линии были изобретателями – дед, например, изобрел “Трехмерный фотоскульптурный процесс Джеффриса”, способ изготовления бюста человека по фотографиям, наделавший много шума в 1930-е гг.; даже у премьер-министра Невилла Чемберлена был такой бюст.

Когда Алеку исполнилось восемь, отец подарил ребенку набор юного химика, в котором был даже флакончик с серной кислотой – с современной точки зрения удивительно легкомысленный подарок, но тогда восьмилеток считали более дееспособными, чем сейчас считают старшеклассников. Ожог от кислоты оставил на лице Алека шрам, который ныне скрывает борода. А еще папа купил ему старинный микроскоп. В 12 лет Алек с увлечением анатомировал насекомых. Как он сам потом вспоминал, родители к его хобби относились с пониманием, но ровно до тех пор, пока ребенок от шмелей не перешел к млекопитающим: зарабатывая доставкой газет, он нашел на дороге дохлую кошку, принес домой и выложил с исследовательскими целями на обеденный стол.

Алек выиграл стипендию на обучение в оксфордском Мертон-колледже и окончил его в 1972 г. с отличием по биохимии. Получил степень PhD, затем несколько лет работал в Амстердамском университете с Ричардом Флавеллом. Они учились отыскивать в геноме млекопитающих копии определенных генов.

Эффективных методов секвенирования еще не существовало, о геноме человека были известны самые общие вещи, чуть дальше Центральной Догмы и триплетного генетического кода. Известно, например, что где-то в геноме должны быть гены гемоглобина, миоглобина (миоглобин связывает кислород в мышцах, создавая запас, необходимый для их работы) и других глобинов. Ну и как их найти? Геном человека огромен. Возможно, известно, в какой хромосоме находится ген – например, есть наблюдения, что, когда происходит делеция (удаление) участка этой хромосомы, исчезает соответствующий белок. Но поиск даже в одной хромосоме из 23 – непростая задача. Еще раз: на дворе 1970-е гг., секвенирования нет, нет многочисленных фирм, производящих умное оборудование для исследования ДНК. Есть небольшое международное сообщество более или менее сумасшедших ученых, которые знают, какое место займут в будущем нуклеиновые кислоты, и азартно придумывают, с какого конца взяться за это невозможное дело.

 

Салат из ДНК и саузерн-блоттинг

К тому времени любимым инструментом молекулярных биологов стали ферменты рестриктазы. Эти ферменты открыл Хэмилтон Смит (Нобелевская премия 1978 г.). Замечательны они тем, что отыскивают в ДНК определенные “слова” (например, GGGCCC или CGTACG) и разрезают обе нити именно в этих местах. Такие участки называются сайтами рестрикции. Рестриктазы применяются для нарезания сверхдлинных молекул на удобные фрагменты, не слишком большие и не слишком маленькие, которые потом сортируют по длине с помощью электрофореза в геле.

Но, если нарезать рестриктазами всю ДНК, выделенную из некоего образца (тотальную ДНК), получится порядочная каша – слишком много фрагментов, чтобы в них можно было разобраться. И тут опять помогает бесценное свойство молекул ДНК – комплементарность. Если у нас есть кусочек ДНК, комплементарный искомому гену (допустим, мы уже изучили другой ген, похожий, и взяли его фрагмент; дальше будет именно такой пример), то мы можем как-то пометить этот кусочек, хотя бы теми же радиоактивными изотопами. Он будет играть роль зонда – свяжется со своим комплементарным участком в ДНК, разогнанной на электрофорезе, и это решит проблему. Будет видна в простом случае (если этот участок встречается в ДНК один раз) одна полоска, а если несколько – то все же несколько, а не неизвестно сколько. Общая картина определяется взаимным расположением искомых участков и сайтов рестрикции. Этот метод получил название саузерн-блоттинга (“саузерн” – в честь изобретателя, британского молекулярного биолога сэра Эдвина Саузерна, а blot по-английски “пятно”).

ДНК-блот, или саузерн-блот, или саузерн-блоттинг, – метод выявления определенной нуклеотидной последовательности ДНК в образце. ДНК обрабатывают рестриктазами, получившиеся фрагменты разгоняют на электрофорезе. Затем накладывают на гель листок нитроцеллюлозной или нейлоновой мембраны и плотно прижимают. ДНК при этом отпечатывается на мембране и довольно прочно связывается с ней (мембрана заряжена положительно, а ДНК, как мы помним, отрицательно). Для окончательного закрепления мембрану сушат в вакууме, нагревают или освещают УФ-излучением. Потом ее опускают в раствор, содержащий зонд – однонитевую молекулу ДНК, комплементарную участку той последовательности, которая нас интересует. Зонд гибридизуется (связывается) с ДНК образца; двухцепочечные участки к тому моменту расплетаются – денатурируют, так что с этим проблем не возникает. Молекула-зонд каким-то образом помечена (содержит радиоактивный изотоп или к ней прицеплена молекула красителя), и в результате на мембране-блоте появится радиоактивная или окрашенная полоска – она соответствует фрагменту ДНК, который содержит участок, комплементарный зонду. Радиоактивную полоску мы можем увидеть таким же способом, как и полоски на геле после секвенирования, – приложив мембрану к рентгеновской пленке на некоторое время и затем проявив ее. Таким способом, например, можно прикинуть, сколько раз эта последовательность встречается в геноме. А можно вырезать соответствующую метке полоску из геля, выделить из нее ДНК (после блоттинга ее там осталось еще много, не вся ДНК связалась с мембраной) и исследовать дальше именно нужный фрагмент.

“Southern” в переводе с английского – “южный”, и вполне естественно, что основанный на аналогичном принципе метод определения мРНК в образце получил название “нозерн-блоттинг”, а метод определения специфических белков – “вестерн-блоттинг”, то есть северный и западный соответственно. Сам Эдвин Саузерн, по свидетельству того же Алека Джеффриса, никогда не называл свой метод отпечатков “саузерн-блоттингом”, а скромно говорил “перенос ДНК”.

В 1977 г. (статья Сенгера о секвенировании методом терминаторов только что опубликована) Джеффрис вернулся в Великобританию, в Лестерский университет, чтобы “поженить новые технологии, которыми пользовалась молекулярная биология, с генетикой человека”. По его словам, идея использовать эти технологии для поиска наследуемых индивидуальных вариаций в геноме появилась уже тогда. Через семь лет, в 1984 г., Алек Джеффрис открыл “метод отпечатков пальцев ДНК”, который часто называют более коротко, калькой с английского, “ДНК-фингерпринтинг” или “ДНК-фингерпринт”.

Очевидно, что в геномах у разных людей должны быть различия, но как найти эти крошечные индивидуальные различия среди миллиардов букв? Оказалось, для этого необязательно секвенировать весь геном. Можно использовать саузерн-блоттинг.

Алек Джеффрис одним из первых описал феномен полиморфизма длин рестрикционных фрагментов (restriction fragment length polymorphism, RFLP). Два образца ДНК – допустим, взятые у двух разных людей – обрабатывают одной и той же рестриктазой, потом гибридизуют отпечатки на мембране с одним и тем же зондом и получают неодинаковые картинки, длины меченых фрагментов не совпадают. Почему так происходит?

Оказалось, у некоторых людей может отсутствовать тот или иной сайт рестрикции по причине замены одного нуклеотида, например GGGCCC у них превращается в GGТCCC. Рестриктаза теперь его не узнаёт – она сурова, как поисковик программы Word, и, в отличие от Google, не делает поправок на опечатки. Если обработать рестриктазой ДНК человека с такой мутацией, то вместо двух коротких фрагментов, как у большинства людей, у него получится один длинный. И та же картина может наблюдаться у потомков этого человека.

STR и момент “эврика!”

Казалось бы, вот он, путь к изучению человеческого разнообразия. Но путь, с учетом тогдашних технических возможностей, не слишком удобный. Таких однобуквенных замен в геноме человека очень много – около 10 млн у каждого из нас. (Правильнее называть их однонуклеотидными полиморфизмами – single nucleotide polymorphism, SNP, или просто снипы; запомним этот термин, нам с ним еще встречаться и встречаться!) Но невозможно угадать заранее, какой сайт рестрикции может быть испорчен нуклеотидной заменой у конкретного человека. “Их [SNP] трудно найти и проанализировать, и они не очень-то много говорят о разнообразии людей: ты или видишь отличие, или не видишь”, – говорил Джеффрис[14]. Современных специалистов по ДНК-идентификации снипы очень интересуют, но тогда – нужен был другой метод. Что-то другое в геноме человека, то, что есть у всех, но при этом достаточно разнообразно и может использоваться в качестве индивидуальных характеристик.

И такие участки в геноме существуют. Теперь, после изобретения Джеффриса, кажется, будто эволюция их специально разработала для нужд судебных экспертов! Тандемные повторы ДНК – короткие участки, которые повторяются много раз, как сказка про белого бычка; тандемными они называются потому, что идут друг за другом, “голова в хвост”, в отличие от повторов диспергированных, которые друг к другу не примыкают. Возникают такие повторы, в частности, из-за “проскальзывания” ферментного комплекса по матрице при копировании ДНК (в результате участок копируется повторно) или из-за ошибок рекомбинации (обмена участками между парными хромосомами).

Хромосом у нас, как у большинства животных, двойной комплект: каждая представлена двумя копиями, одна получена от матери, другая от отца. Именно поэтому и гены в норме у нас представлены двумя копиями, не всегда идентичными – все по Грегору Менделю. А в процессе образования яйцеклеток и сперматозоидов гомологичные, или парные, хромосомы обмениваются участками – рекомбинируют. Это дополнительно разнообразит наборы наследственных признаков у потомства.

Интуитивно понятно, что число таких повторов должно быть изменчивым – где появились два или три повтора, там могут появиться и четыре, и шесть, по тем же самым причинам. К тому же если это некодирующие участки, то мутации в них не портят никаких белков и не приводят к болезням, следовательно такие мутации не отсекаются естественным отбором и могут накапливаться. Значит, можно предположить, что число тандемных повторов может быть индивидуальным признаком – у одного человека в определенном участке три повтора, у другого пять или восемь. Но это тоже приведет к полиморфизму длины фрагментов рестрикции: чем больше повторяющихся фрагментов окажется между сайтами, распознаваемыми рестриктазой, тем длиннее получится кусок.

Тандемные повторы бывают разные. Если длина повторяющегося мотива 7–60 нуклеотидов, это минисателлиты. Один из их видов – гипервариабельные минисателлиты (VNTR, variable number of tandem repeats), они расположены в некодирующих регионах и, в соответствии с названием, число их может быть различным у разных особей. Если же длина повторяющегося участка меньше, от 2 до 6 нуклеотидов, – это микросателлиты, или короткие тандемные повторы (STR, short tandem repeats). Сейчас золотым стандартом в установлении личности по ДНК считается исследование STR (потом разберемся почему), но начиналось все с VNTR. Впрочем, чтобы всех запутать, в некоторых источниках оба типа повторов называют VNTR.

А есть еще сателлитные повторы, наибольшие по размеру повторяющегося участка, – они в криминалистике не используются.


Но, чтобы получать картинки методом саузерн-блоттинга, мало полиморфизма длины фрагментов – еще нужна метка. Чем пометить полоски, содержащие повторы, чтобы сделать их видимыми? И еще хотелось бы, чтоб метка была для всех одинаковая (ее же надо готовить заранее), а рисунок полосок получался индивидуальным, своим для каждого человека.

Помощь пришла из совершенно другого проекта. В лаборатории Джеффриса изучали человеческий ген миоглобина – белка, который переносит кислород в мышцах, однако начать пришлось с гена серого тюленя. Тюлень – зверь ныряющий, кислорода ему нужно много, поэтому с его гена миоглобина активно считывается мРНК. Если выделить мРНК и синтезировать на ее матрице комплементарную ДНК (кДНК), она будет очень похожа на искомый ген. В природе у млекопитающих ДНК не синтезируется на матрице РНК, но для исследования это удобно, необходимый для этого фермент ревертазу можно позаимствовать у вирусов. А через ген тюленя, используя его как зонд, исследователи планировали выйти на ген миоглобина человека: при всем нашем внешнем несходстве с тюленями и другими зверями гены млекопитающих в целом довольно похожи.

“Подлинная история ДНК-фингерпринта началась в штаб-квартире Британской антарктической службы в Кембридже, – вспоминал профессор Джеффрис. (Вопреки названию, эта служба занимается не только Антарктикой, но и Арктикой. – Прим. авт.) – Я взял большой кусок тюленьего мяса из их морозилки, запиравшейся на ключ, и, коротко говоря, мы получили ген миоглобина тюленя, поглядели на ген миоглобина человека – и там, внутри интрона этого гена, нашли тандемные повторы ДНК – минисателлиты”. Собственно, слово “минисателлиты” и придумали Джеффрис с соавторами.

Для начала, что такое интроны? Дело в том, что гены белков высших организмов состоят из экзонов – областей, кодирующих аминокислотные последовательности белка, – и интронов – областей, “ничего не означающих”, вроде типографской “рыбы”, – бессмысленного текста для технических надобностей. Перед тем как синтезировать белок, интроны приходится вырезать из матричной РНК и склеивать экзоны между собой. Почему эволюция вставила в гены куски, которые потом все равно надо вырезать, – отдельная история. Но, кстати, существование интронов в гене бета-глобина кролика впервые продемонстрировали Джеффрис и Флавелл[15].

 

А почему “минисателлиты”, причем тут спутники? Этот термин уходит корнями в методы молекулярной биологии. Биомолекулы, ДНК в том числе, разделяют не только электрофорезом, но и центрифугированием: пробирки с раствором устанавливают в специальные роторы и быстро вращают – скорость может достигать десятков тысяч оборотов в минуту. В центробежном поле частицы, имеющие разную плотность, форму и размеры, осаждаются с разной скоростью, то есть образуют зоны на различной высоте от донышка. Так вот, ДНК, богатая повторами, при центрифугировании попадала в отдельную фракцию – ее плотность чуть выше за счет более высокого содержания GC-пар. За это ее и назвали “сателлитной ДНК”, а позже название перешло на любопытные вещи, которые в ней были найдены. Сателлитная ДНК находится главным образом в центромерных и теломерных участках хромосом (иными словами, в серединках и на концах), но тандемные повторы могут встречаться и в других местах, в том числе внутри гена, в интроне.

Возникла идея использовать миоглобиновые минисателлиты, которые нашел Джеффрис с соавторами, в качестве зонда, чтобы поискать еще такие же последовательности. Когда это удалось, найденные участки отсеквенировали и обнаружили источник сходства – так называемую сердцевинную, или ко́ровую последовательность (core sequence) – участок ДНК, который очень похож у разных минисателлитов. В разных местах генома повторялись разные “слова”, но эти повторы везде перемежались одним и тем же мотивом, содержащим GGGCAGGARG, где R – любой нуклеотид. Повторы, а в них другие повторы – будет понятнее, если посмотрите на рис. 12.



Зонд из повторов коровой последовательности мог прицепляться к множеству минисателлитов одновременно. Надо было проверить, как это будет работать, и Джеффрис поставил электрофорез с ДНК людей и других биообъектов, у которых тоже могли оказаться похожие минисателлиты.

Впоследствии он даже не мог вспомнить, где было какое животное, – радиоавтограф этого блота вместе с записями в журнале был продан на благотворительном аукционе за 180 фунтов, и позже покупатель мог считать, что ему повезло. Так или иначе, три дорожки слева занимали ДНК лаборантки Джеффриса и ее родителей, а самую правую дорожку – ДНК табака.



Момент истины наступил утром 10 сентября 1984 г., когда Джеффрис проявлял радиоавтографы. “Я взглянул, подумал «что за каша», а потом вдруг увидел закономерность. Уровень индивидуальной специфичности – во многих световых годах от всего, что наблюдалось раньше”.

В “лесенках” горизонтальных линий были видны совпадения и расхождения, связанные с родством – ДНК ребенка, мамы и папы проявляли семейное сходство. Каждый фрагмент ДНК ребенка соответствовал по длине какому-нибудь фрагменту материнской либо отцовской ДНК. Не все родительские фрагменты присутствовали у дочери (что естественно: мы получаем от каждого родителя только половину его генетического материала), но “лишних” фрагментов, взявшихся из ниоткуда, в ДНК ребенка не было, каждый – или от папы, или от мамы.

Индивидуальные характеристики ДНК, передаваемые по наследству, от родителей к детям. Путь к созданию методики, за которую любой криминалист отдаст правую руку, – способ устанавливать однозначное соответствие между биоматериалом и индивидом. Безошибочно определять, кому принадлежит след крови, спермы, волосы или лоскуток кожи. И наоборот – идентифицировать человека, который не может или не хочет себя назвать, по анализу крови, как если бы в каждой клетке его тела был записан номер паспорта. Фотографии устаревают, документы можно подделать, отпечатки пальцев изменить хирургическими методами, но эта метка всегда остается неизменной. Да, и еще дополнительный бонус – возможность выявлять родственные связи между индивидами.

“Это был момент «эврика!». Пока я стоял перед этой картинкой в фотокомнате, моя жизнь сделала крутой поворот”, – писал Джеффрис.

В тот же день сотрудники лаборатории набросали список возможных применений – судмедэкспертиза, установление отцовства, установление идентичности или неидентичности близнецов, мониторинг трансплантатов, охрана природы и сохранение редких видов. А вечером жена Джеффриса Сью добавила еще один пункт: разрешение спорных вопросов об иммиграции – установление родственных связей в этих вопросах играет первостепенную роль.

Все это сбылось. Но метод еще предстояло улучшить, избавиться от “каши”. Выяснилось также, что высоковариабельных участков, пригодных для фингерпринта, в геноме много, что анализировать их можно независимо и что по ДНК-фингерпринту, как и было задумано, можно различать даже ближайших родственников (кроме идентичных близнецов, естественно.) Джеффрис с соавторами опубликовали статью[16], и мир изменился.


Подытожим, как получают ДНК-фингерпринт по Джеффрису. Выделяют ДНК из образца – пятна крови, спермы и т. п. Обрабатывают рестриктазами, фрагменты разгоняют на электрофорезе, затем делают саузерн-блоттинг, молекулы ДНК переносятся на мембрану. Мембрану с отпечатками ДНК инкубируют с радиоактивно меченным зондом, содержащим коровую последовательность. Затем накладывают на рентгеновскую пленку, выдерживают, проявляют и видят рисунок – индивидуальный штрихкод человека.

Сразу хочется спросить, много ли ДНК можно извлечь из типичного образца на месте преступления. На форез-то хватит? Вопрос в точку, и мы вернемся к нему в главе про полимеразную цепную реакцию.

  Здесь и ниже цитируется по: https://www.lister-institute.org.uk/sir-alec-jeffreys-discusses-developments-dna-fingerprinting/.
15Jeffreys A. J. & Flavell R. A. The rabbit beta-globin gene contains a large insert in the coding sequence // Cell. 1977; 12, 1097–1108.
16Jeffreys A. J., Wilson V. & Thein S. L. Individual-specific ‘fingerprints’ of human DNA // Nature. 1985; 316, 76–79; doi: 10.1038/316076a0.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»