Читать книгу: «Fragments of Earth Lore: Sketches & Addresses Geological and Geographical», страница 17
VIII.
Recent Researches in the Glacial Geology of the Continent. 27
THE President of this section must often have some difficulty in selecting a subject for his address. It is no longer possible to give an interesting and instructive summary of the work done by the devotees of our science during even one year. So numerous have the students of geological science become – so fertile are the fields they cultivate – so abundant the harvests they reap, that one in my present position may well despair of being able to take stock of the numerous additions to our knowledge which have accumulated within the last twelve months. Neither is there any burning question which at this time your President need feel called upon to discuss. True, there are controversies that are likely to remain unsettled for years to come – there are still not a few matters upon which we must agree to differ – we do not yet see eye to eye in all things geological. But experience has shown that as years advance truth is gradually evolved, and old controversies die out, and so doubtless it will continue to be. The day when controversies shall cease, however, is yet, I hope, far in the future; for should that dull and unhappy time ever arrive, it is quite certain that mineralogists, petrologists, palæontologists, and geologists shall have died out of the world. Following the example of many of my predecessors, I shall confine my remarks to certain questions in which I have been specially interested; and in doing so I shall endeavour to steer clear, as far as I can, of controversial matters. My purpose, then, is to give an outline of some of the results obtained during the last few years by Continental workers in the domain of glacial geology.
Those who are not geologists will probably smile when they hear one declare that wielders of the hammer are extremely conservative – that they are slow to accept novel views, and very tenacious of opinions which have once found favour in their eyes. Nevertheless, such is the case, and well for us that it is so. However captivating, however imposing, however strongly supported by evidence a new view may appear to be, we do well to criticise, to sift the evidence, and to call for more facts and experiments, if such are possible, until the proofs become so strong as to approach as near a demonstration as geologists can in most cases expect such proofs to go. The history of our science, and indeed of most sciences, affords abundant illustration of what I say. How many long years were the views of sub-aërial erosion, as taught by Hutton and Playfair, canvassed and controverted before they became accepted! And even after their general soundness had been established, how often have we heard nominal disciples of these fathers of physical geology refuse to go so far as to admit that the river-valleys of our islands have been excavated by epigene agents! If, as a rule, it takes some time for a novel view to gain acceptance, it is equally true that views which have long been held are only with difficulty discarded. Between the new and the old there is a constant struggle for existence, and if the latter should happen to survive, it is only in a modified form. I have often thought that a history of the evolution of geological theories would make a very entertaining and instructive work. We should learn from it, amongst other things, that the advance of our science has not always been continuous – now and again, indeed, it has almost seemed as if the movement had been retrograde. Knowledge has not come in like an overwhelming flood – as a broad majestic river – but rather like a gently-flowing tide, now advancing, now retiring, but ever, upon the whole, steadily gaining ground. The history I speak of would also teach us that many of the general views and hypotheses which have been from time to time abandoned as unworkable, are hardly deserving of the reproach and ridicule which we in these latter days may be inclined to cast upon them. As the Scots proverb says: “It is easy to be wise behindhand.” It could be readily shown that not a few discarded notions and opinions have frequently worked for good, and have rather stimulated than checked inquiry. Such reflections should be encouraging to every investigator, whether he be a defender of the old or an advocate of the new. Time tries all, and each worker may claim a share in the final establishment of the truth.
Perhaps there is no department of geological inquiry that has given rise to more controversy than that which I have selected for the subject of this address. Hardly a single step in advance has been taken without vehement opposition. But the din of contending sides is not so loud now – the dust of the conflict has to some extent cleared away, and the positions which have been lost or maintained, as the case may be, can be readily discerned. The glacialist who can look back over the last twenty-five years of wordy conflict has every reason to be jubilant and hopeful. Many of those who formerly opposed him have come over to his side. It is true he has not had everything his own way. Some extreme views have been abandoned in the struggle; that of a great Polar ice-sheet, for example, as conceived of by Agassiz. I am not aware, however, that many serious students of glacial geology ever adopted that view. But it was quite an excusable hypothesis, and has been abundantly suggestive. Had Agassiz lived to see the detailed work of these later days, he would doubtless have modified his notion and come to accept the view of large continental glaciers which has taken its place.
The results obtained by geologists who have been studying the peripheral areas of the drift-covered regions of our Continent, are such as to satisfy us that the drifts of those regions are not iceberg-droppings, as we used to suppose, but true morainic matter and fluvio-glacial detritus. Geologists have not jumped to this conclusion – they have only accepted it after laborious investigation of the evidence. Since Dr. Otto Torell, in 1875, first stated his belief that the Diluvium of north Germany was of glacial origin a great literature on the subject has sprung up, a perusal of which will show that with our German friends glacial geology has passed through much the same succession of controversial phases as with us. At first icebergs are appealed to as explaining everything – next we meet with sundry ingenious attempts at a compromise between floating-ice and a continuous ice-sheet. As observations multiply, however, the element of floating-ice is gradually eliminated, and all the phenomena are explained by means of land-ice and “Schmelz-wasser” alone. It is a remarkable fact that the iceberg hypothesis has always been most strenuously upheld by geologists whose labours have been largely confined to the peripheral areas of drift-covered countries. In the upland and mountainous tracts, on the other hand, that hypothesis has never been able to survive a moderate amount of accurate observation. Even in Switzerland – the land of glaciers – geologists at one time were of opinion that the boulder-clays of the low-grounds had a different origin from those which occur in the mountain-valleys. Thus, it was supposed that at the close of the Pleistocene period the Alps were surrounded by great lakes or by gulfs of some inland sea, into which the glaciers of the high valleys flowed and calved their icebergs – these latter scattering erratics and earthy débris over the drowned areas. Sartorius von Waltershausen28 set forth this view in an elaborate and well-illustrated paper. Unfortunately for his hypothesis no trace of the supposed great lakes or the inland sea has ever been detected: on the contrary, the character of the morainic accumulations, and the symmetrical grouping and radiation of the erratics and perched blocks over the foot-hills and low-grounds, show that these last have been invaded and overflowed by the glaciers themselves. Even the most strenuous upholders of the efficacy of icebergs as originators of some boulder-clays, admit that the boulder-clay or till, of what we may call the inner or central region of a glaciated tract is the product of land-ice. Under this category comes the boulder-clay of Norway, Sweden, and Finland, and of the Alpine Lands of central Europe, not to speak of the hilly parts of our own islands.
When we come to study the drifts of the peripheral areas, it is not difficult to see why these should be considered to have had a different origin. They present certain features which, although not absent from the glacial deposits of the inner region, are not nearly so characteristic of such upland tracts. I refer especially to the frequent interstratification of boulder-clays with well-bedded deposits of clay, sand, and gravel; and to the fact that these boulder-clays are often less compressed than those of the inner region, and have even occasionally a silt-like character. Such appearances do seem at first to be readily explained on the assumption that the deposits have been accumulated in water opposite the margin of a continental glacier or ice-sheet – and this was the view which several able investigators in Germany were for some time inclined to adopt.
But when the phenomena came to be studied in greater detail, and over a wider area, this preliminary hypothesis did not prove satisfactory. It was discovered, for example, that “giants’ kettles”29 were more or less commonly distributed under the glacial deposits, and such “kettles” could only have originated at the bottom of a glacier. Again, it was found that pre-glacial accumulations were plentifully developed in certain places below the drift, and were often involved with the latter in a remarkable way. The “brown-coal formation” in like manner was violently disturbed and displaced, to such a degree that frequently the boulder-clay is found to underlie it. Similar phenomena were encountered in regions where the drift overlies the Chalk – the latter presenting the appearance of having been smashed and shattered – the fragments having often been dragged some distance, so as to form a kind of friction-breccia underlying the drift, while large masses are often included in the clay itself. All the facts pointed to the conclusion that these disturbances were due to tangential thrusting or crushing, and were not the result of vertical displacements, such as are produced by normal faulting, for the disturbances in question die out from above downwards. Evidence of similar thrusting or crushing is seen in the remarkable faults and contortions that so often characterise the clays and sands that occur in the boulder-clay itself. The only agent that could produce the appearances, now briefly referred to, is land-ice, and we must therefore agree with German geologists that glacier-ice has overflowed all the drift-covered regions of the peripheral area. No evidence of marine action in the formation of the stony clays is forthcoming – not a trace of any sea-beach has been detected. And yet, if these clays had been laid down in the sea during the retreat of the ice-sheet from Germany, surely such evidence as I have indicated ought to be met with. To the best of my knowledge the only particular facts which have been appealed to, as proofs of marine action, are the appearance of bedded deposits in the boulder-clays, and the occasional occurrence in the clays themselves of a sea-shell. But other organic remains are also met with now and again in similar positions, such as mammalian bones and freshwater shells. All these, however, have been shown to be derivative in their origin – they are just as much erratics as the stones and boulders with which they are associated. The only phenomena, therefore, that the glacialist has to account for are the bedded deposits which occur so frequently in the boulder-clays of the peripheral regions, and the occasional silty and uncompressed character of the clays themselves.
The intercalated beds are, after all, not hard to explain. If we consider for a moment the geographical distribution of the boulder-clays, and their associated aqueous deposits, we shall find a clue to their origin. Speaking in general terms, the stony clays thicken out as they are followed from the mountainous and high-lying tracts to the low-grounds. Thus they are of inconsiderable thickness in Norway, the higher parts of Sweden, and in Finland, just as we find is the case in Scotland, northern England, Wales, and the hilly parts of Ireland. Traced south from the uplands of Scandinavia and Finland, they gradually thicken out as the low-grounds are approached. Thus in southern Sweden they reach a thickness of 43 metres or thereabout, and of 80 metres in the northern parts of Prussia, while over the wide low-lying regions to the south they attain a much greater thickness – reaching in Holstein, Mecklenburg, Pomerania, and west Prussia, a depth of 120 to 140 metres, and still greater depths in Hanover, Mark Brandenburg, and Saxony. In those regions, however, a considerable portion of the diluvium consists, as we shall see presently, of water-formed beds.
The geographical distribution of the aqueous deposits, which are associated with the stony clays, is somewhat similar. They are very sparingly developed in districts where the boulder-clays are thin. Thus they are either wanting, or only occur sporadically in thin irregular beds, in the high-grounds of northern Europe generally. Further south, however, they gradually acquire more importance, until in the peripheral regions of the drift-covered tracts they come to equal and eventually to surpass the boulder-clays in prominence. These latter, in fact, at last cease to appear, and the whole bulk of the diluvium, along the southern margin of the drift area, appears to consist of aqueous accumulations alone.
The explanations of these facts advanced by German geologists are quite in accordance with the views which have long been held by glacialists elsewhere, and have been tersely summed up by Dr. Jentzsch.30 The northern regions, he says, were the feeding-grounds of the inland-ice. In those regions melting was at a minimum, while the grinding action of the ice was most effective. Here, therefore, erosion reached its maximum – ground-moraine or boulder-clay being unable to accumulate to any thickness. Further south melting greatly increased, while ground-moraine at the same time tended to accumulate – the conjoint action of glacier-ice and sub-glacial water resulting in the complex drifts of the peripheral area. In the disposition and appearance of the aqueous deposits of the diluvium we have evidence of an extensive sub-glacial water-circulation – glacier-mills that gave rise to “giants' kettles” – chains of sub-glacial lakes in which fine clays gathered – streams and rivers that flowed in tunnels under the ice, and whose courses were paved with sand and gravel. Nowhere do German geologists find any evidence of marine action. On the contrary, the dovetailing and interosculation of boulder-clay with aqueous deposits are explained by the relation of the ice to the surface over which it flowed. Throughout the peripheral area it did not rest so continuously upon the ground as was the case in the inner region of maximum erosion. In many places it was tunnelled by rapid streams and rivers, and here and there it arched over sub-glacial lakes, so that accumulation of ground-moraine proceeded side by side with the formation of aqueous sediments. Much of that ground-moraine is of the usual tough and hard-pressed character, but here and there it is somewhat less coherent and even silt-like. Now a study of the ground-moraines of modern glaciers affords us a reasonable explanation of such differences. Dr. Brückner31 has shown that in many places the ground-moraine of the Alpine glaciers is included in the bottom of the ice itself. The ground-moraine, he says, frequently appears as an ice-stratum abundantly impregnated with silt and rock-fragments – it is like a conglomerate or breccia which has ice for its binding material. When this ground-moraine melts out of the ice – no running water being present – it forms a layer of unstratified silt or clay, with stones scattered irregularly through it. Such being the case in modern glaciers, we can hardly doubt that over the peripheral areas occupied by the old northern ice-sheet boulder-clay must frequently have been accumulated in the same way. Nay, when the ground-moraine melted out and dropt here and there into quietly-flowing water it might even acquire in part a bedded character.
The limits reached by the inland-ice during its greatest extension are becoming more and more clearly defined, although its southern margin will probably never be so accurately determined as that of the latest epoch of general glaciation. The reasons for this are obvious. When the inland-ice flowed south to the Harz and the hills of Saxony it formed no great terminal moraines. Doubtless many erratics and much rock-rubbish were showered upon the surface of the ice from the higher mountains of Scandinavia, but owing to the fanning-out of the ice on its southward march, such superficial débris was necessarily spread over a constantly-widening area. It may well be doubted, therefore, whether it ever reached the terminal front of the ice-sheet in sufficient bulk to form conspicuous moraines. It seems most probable that the terminal moraines of the great inland-ice would consist of low banks of boulder-clay and aqueous materials-the latter, perhaps, strongly predominating, and containing here and there larger and smaller angular erratics which had travelled on the surface of the ice. However that may be, it is certain that the whole region in question has been considerably modified by subsequent denudation, and to a large extent is now concealed under deposits belonging to later stages of the Pleistocene period. The extreme limits reached by the ice are determined rather by the occasional presence of rock-striæ and roches moutonnées, of boulder-clay and northern erratics, than by recognisable terminal moraines. The southern limits reached by the old inland-ice appear in this way to have been tolerably well ascertained over a considerable portion of central Europe. Some years ago I published a small sketch-map32 showing the extent of surface formerly covered by ice. On this map I did not venture to draw the southern margin of the ice-sheet in Belgium further south than Antwerp, where northern erratics were known to occur, but the more recent researches of Belgian geologists show that the ice probably flowed south for some little distance beyond Brussels.33 Here and there in other parts of the Continent the southern limits reached by the northern drift have also been more accurately determined, but, so far as I know, none of these later observations involves any serious modification of the sketch-map referred to.
I have now said enough, however, to show that the notion of a general ice-sheet having covered so large a part of Europe, which a few years ago was looked upon as a wild dream, has been amply justified by the labours of those who are so assiduously investigating the peripheral areas of the “great northern drift.” And perhaps I may be allowed to express my own belief that the drifts of middle and southern England, which exhibit the same complexity as the Lower Diluvium of the Continent, will eventually be generally acknowledged to have had a similar origin. I have often thought that whilst politically we are happy in having the sea all round us, geologically we should have gained perhaps by its greater distance. At all events we should have been less ready to invoke its assistance to explain every puzzling appearance presented by our glacial accumulations.
I now pass on to review some of the general results obtained by continental geologists as to the extent of area occupied by inland-ice during the last great extension of glacier-ice in Europe. It is well known that this latest ice-sheet did not overflow nearly so wide a region as that underneath which the lowest boulder-clay was accumulated. This is shown not only by the geographical distribution of the youngest boulder-clay, but by the direction of rock-striæ, the trend of erratics, and the position of well-marked terminal moraines. Gerard de Geer has given a summary34 of the general results obtained by himself and his fellow-workers in Sweden and Norway; and these have been supplemented by the labours of Berendt, E. Geinitz, Hauchecorne, Keilhack, Klockmann, Schröder, Wahnschaffe, and others in Germany, and by Sederholm in Finland.35 From them we learn that the end-moraines of the ice circle round the southern coasts of Norway, from whence they sweep south-east by east across the province of Gottland in Sweden, passing through the lower ends of Lakes Wener and Wetter, while similar moraines mark out for us the terminal front of the inland-ice in Finland – at least two parallel frontal moraines passing inland from Hango Head on the Gulf of Finland through the southern part of that province to the north of Lake Ladoga. Further north-east than this they have not been traced; but, from some observations by Helmersen, Sederholm thinks it probable that the terminal ice-front extended north-east by the north of Lake Onega to the eastern shores of the White Sea. Between Sweden and Finland lies the basin of the Baltic, which at the period in question was filled with ice, forming a great Baltic glacier which overflowed the Öland Islands, Gottland, and Öland, and which, fanning-out as it passed towards the south-west, invaded, on the south side, the Baltic provinces of Germany, while, on the north, it crossed the southern part of Scania in Sweden and the Danish islands to enter Jutland.
The upper boulder-clay of those regions is now recognised as the ground-moraine of this latest ice-sheet. In many places it is separated from the older boulder-clay by interglacial deposits – some of which are marine, while others are of freshwater and terrestrial origin. During interglacial times the sea that overflowed a considerable portion of north Germany was evidently continuous with the North Sea, as is shown not only by the geographical distribution of the interglacial marine deposits, but by their North Sea fauna. German geologists generally group all the interglacial deposits together, as if they belonged to one and the same interglacial epoch. This perhaps we must look upon as only a provisional arrangement. Certain it is that the freshwater and terrestrial beds which frequently occur on the same or a lower level, and at no great distance from the marine deposits, cannot in all cases be contemporaneous with the latter. Possibly, however, such discordances may be accounted for by oscillations in the level of the interglacial sea – land and water having alternately prevailed over the same area. Two boulder-clays, as we have seen, have been recognised over a wide region in the north of Germany. In some places, however, three or more such boulder-clays have been observed overlying one another throughout considerable areas, and these clays are described as being distinctly separate and distinguishable the one from the other.36 Whether they, with their intercalated aqueous deposits, indicate great oscillations of one and the same ice-sheet – now advancing, now retreating – or whether the stony clays may not be the ground-moraines of so many different ice-sheets, separated the one from the other by true interglacial conditions, future investigations must be left to decide.
The general conclusions arrived at by those who are at present investigating the glacial accumulations of northern Europe may be summarised as follows: —
1. Before the invasion of northern Germany by the inland-ice the low-grounds bordering on the Baltic were overflowed by a sea which contained a boreal and arctic fauna. These marine conditions are indicated by the presence under the lower boulder-clay of more or less well-bedded fossiliferous deposits. On the same horizon occur also beds of sand, containing freshwater shells, and now and again mammalian remains, some of which imply cold and others temperate climatic conditions. Obviously all these deposits may pertain to one and the same period, or more properly to different stages of the same period – some dating back to a time when the climate was still temperate, while others clearly indicate the prevalence of cold conditions, and are therefore probably somewhat younger.
2. The next geological horizon in ascending order is that which is marked by the Lower Diluvium – the glacial and fluvio-glacial detritus of the great ice-sheet which flowed south to the foot of the Harz Mountains. The boulder-clay on this horizon now and again contains marine, freshwater, and terrestrial organic remains – derived undoubtedly from the so-called pre-glacial beds already referred to. These latter, it would appear, were ploughed up and largely incorporated with the old ground-moraine.
3. The interglacial beds which next succeed contain remains of a well-marked temperate fauna and flora, which point to something more than a mere partial or local retreat of the inland-ice. The geographical distribution of the beds, and the presence in these of such forms as Elephas antiquus, Cervus elephas, C. megaceros, and a flora comparable to that now existing in northern Germany, justify geologists in concluding that the interglacial epoch was one of long duration, and characterised in Germany by climatic conditions apparently not less temperate than those that now obtain. One of the phases of that interglacial epoch, as we have seen, was the overflowing of the Baltic provinces by the waters of the North Sea.
4. To this well-marked interglacial epoch succeeded another epoch of arctic conditions, when the Scandinavian inland-ice once more invaded Germany, ploughing through the interglacial deposits, and working these up in its ground-moraine. So far as I can learn, the prevalent belief among geologists in north Germany is that there was only one interglacial epoch; but, as already stated, doubt has been expressed whether all the facts can be thus accounted for. There must always be great difficulty in the correlation of widely-separated interglacial deposits, and the time does not seem to me to have yet come when we can definitely assert that all those interglacial beds belong to one and the same geological horizon.
I have dwelt upon the recent work of geologists in the peripheral areas of the drift-covered regions of northern Europe, because I think the results obtained are of great interest to glacialists in this country. And for the same reason I wish next to call attention to what has been done of late years in elucidating the glacial geology of the Alpine Lands of central Europe – and more particularly of the low-grounds that stretch out from the foot of the mountains. Any observations that tend to throw light upon the history of the complex drifts of our own peripheral areas cannot but be of service. It is quite impossible to do justice in this brief sketch to the labours of the many enthusiastic geologists who within recent years have increased our knowledge of the glaciation of the Alpine Lands. At present, however, I am not so much concerned with the proofs of general glaciation as with the evidence that goes to show how the Alpine ground-moraines have been formed, and with the facts which have led certain observers to conclude that the Alps have endured several distinct glaciations within Pleistocene times. Swiss geologists are agreed that the ground-moraines which clothe the bottoms of the great Alpine valleys, and extend outwards sometimes for many miles upon the low-grounds beyond, are of true glacial origin. Now these ground-moraines are closely similar to the boulder-clays of this country and northern Europe – like them, they are frequently tough and hard-pressed, but now and again somewhat looser, and less firmly coherent. Frequently also they contain lenticular beds, and more or less thick sheets of aqueous deposits – in some places the stony clays even exhibiting a kind of stratification – and ever and anon such water-assorted materials are commingled with stony clay in the most complex manner. These latter appearances are, however, upon the whole best developed upon the low-grounds that sweep out from the base of the Alps. The only question concerning the ground-moraines that has recently given rise to much discussion is the origin of the materials themselves. It is obvious that there are only three possible modes in which those materials could have been introduced to the ground-moraine: either they consist of superficial morainic débris which has found its way down to the bottom of the old glaciers by crevasses; or they may be made up of the rock-rubbish, shingle, gravel, etc., which doubtless strewed the valleys before these were occupied by ice; or, lastly, they may have been derived in chief measure from the underlying rocks themselves by the action of the ice that overflowed them. The investigations of Penck, Blaas, Böhm, and Brückner appear to me to have demonstrated that the ground-moraines are composed mostly of materials which have been detached from the underlying rocks by the erosive action of the glaciers themselves. Their observations show that the regions studied by them in great detail were almost completely buried under ice – so that the accumulation of superficial moraines was for the most part impossible; and they advance a number of facts which prove positively that the ground-moraines were formed and accumulated under ice. I cannot here recapitulate the evidence, but must content myself by a reference to the papers in which this is fully discussed.37 These geologists do not deny that some of the material may occasionally have come from above, nor do they doubt that pre-existing masses of rock-rubbish and alluvial accumulations may also have been incorporated with the ground-moraines; but the enormous extent of the latter, and the direction of transport and distribution of the erratics which they contain cannot be thus accounted for, while all the facts are readily explained by the action of the ice itself, which used its sub-glacial débris as tools with which to carry on the work of erosion.