Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «Fragments of Earth Lore: Sketches & Addresses Geological and Geographical», страница 21

Шрифт:

Let me, however, advance to another objection. We know that the Glacial period was interrupted by at least one interglacial epoch of temperate and even genial conditions. Two glacial epochs with one protracted interglacial epoch are now generally admitted. How do the supporters of the “earth-movement hypothesis” explain this remarkable succession of climatic changes? Their views as to the cause of glacial conditions we have considered. If we can believe that the glacial phenomena were due to elevation of the land, then we need have no difficulty in understanding how glacial conditions would disappear when the continents again subsided to a lower level. Not only did North America and Europe lose all their early glacial elevation, but by a lucky coincidence the Isthmus of Panama reappeared, and the Gulf Stream resumed its beneficent course into the North Atlantic. This we are to suppose was the cause of the interglacial epoch. But I would point out that the geographical conditions which are thus inferred to have brought about the disappearance of the glacial climate, and to have ushered in the interglacial epoch, are precisely those that now obtain – and, nevertheless, we are not yet in the enjoyment of a climate like that of interglacial times. The strangely equable conditions that permitted the development of the remarkable Pleistocene flora and fauna are not experienced in the Europe of our day. And what about the second glacial epoch? Are we to suppose that once more the lands were greatly uplifted, and that convenient Isthmus of Panama was again depressed? Did the Alps, the Pyrenees, and the plateau of central France – in all of which we have distinct evidence of at least two glacial epochs – did these heights, one may ask, rise up to bring about their earlier glaciation, sink down again to induce interglacial conditions, and once more become uplifted at the succeeding cold epoch, to subside eventually in order to cause a final retreat of their glaciers?

But the climatic changes to be accounted for were in all probability more numerous and complex than those just referred to. Competent observers have adduced unmistakable evidence of three epochs of glaciation in the Alpine Lands of Europe. And we are not without distinct hints that similar changes have taken place in northern and western Europe. Nor in this connection can we ignore the evidence of several interglacial episodes which Mr. Chamberlin and others have detected in the glaciated tracts of North America. Even this is not all, for the upholders of the “earth-movement hypothesis” have still further to account for the climatic oscillations of post-glacial times. If it be hard enough to allow the possibility of one great movement of elevation having affected so enormous an area of our hemisphere, if we find it extremely difficult to believe either that one such widespread movement, or that a multitude of local movements, each more or less independent of the other, could have lifted the glaciated regions successively within reach of the snow-line – we shall yet find it impossible to admit that such remarkable upheavals could be repeated again and again.

We seem driven to conclude, therefore, that the “earth-movement hypothesis” fails to explain the phenomena of Pleistocene times. One cannot deny, indeed, that glaciation might be induced locally by elevation of the land. It is quite conceivable that mountains now below the limits of perennial snow might come to be ridged up to such an extent as to be capable of sustaining snow-fields and glaciers. And such local movements may possibly have happened here and there during the long-continued Pleistocene period. But the glacial phenomena of that period are on much too grand a scale and far too widely distributed to be accounted for in that way. And if the occurrence of even one glacial epoch cannot be thus explained, we may leave the supporters of the “earth-movement hypothesis” to show us what light is thrown by their urim and thummim on the origin of succeeding interglacial and glacial climates.

There is yet another physical condition of the Pleistocene and post-glacial periods which any adequate explanation must embrace. I refer to the oscillation of sea-level, of which so many proofs are forthcoming. It is very remarkable that almost everywhere throughout the maritime regions of formerly glaciated areas we find evidence of submergence. So commonly is this the case, that geologists have long suspected that the connection between glaciation and submergence might be one of cause and effect. The possible influence of great ice-sheets in disturbing the relative level of land and sea is a question, therefore, of very great importance. It is one, however, which must be solved by physicists. Croll and others have advocated the view that the great accumulations of ice of the Glacial period may have displaced the earth’s centre of gravity, and thus caused the sea to rise upon the glaciated hemisphere. The various results arrived at by physicists are hardly comparable, because each has used different data, but it seems probable that we have in this view a vera causa of oscillations of the sea-level. Another hypothesis would explain the rise of the sea as due to the attractive influence of the great ice-masses, but Dr. Drygalski’s and Mr. Woodward’s elaborate investigations would seem to have demonstrated that this notion does not account for the facts. Yet another speculation has been advanced. Mr. Jamieson has suggested that the mere weight of the ice-sheets would suffice to press down the earth’s crust into a supposed liquid substratum, and this explanation has met with much acceptance. Unfortunately our knowledge of the condition of the earth’s interior is so very limited that we cannot be certain as to how the crust would be affected by the weight of an ice-sheet. No doubt Mr. Jamieson’s hypothesis gives a specious explanation of certain geological phenomena, but if there be no liquid substratum underlying a thin crust it cannot be true. At present the prevalent view of physicists appears to be that the earth is substantially solid. Professor George Darwin has shown that the prominent inequalities of the earth’s surface could not be sustained unless the crust be as rigid as granite for a depth of 1000 miles. “If the earth be solid throughout,” he remarks, “then at 1000 miles from the surface the material must be as strong as granite. If it be fluid or gaseous inside, and the crust 1000 miles thick, that crust must be stronger than granite, and if only 200 or 300 miles in thickness, much stronger than granite.” This conclusion is obviously strongly confirmatory of Sir William Thomson’s view, that the earth is solid throughout. But many geologists find it hard to account for the convolutions of strata and other structural phenomena on the supposition that the earth is entirely solid, and they are inclined, therefore, to adopt the hypothesis of a sub-crust layer of liquid matter. Whether this be actually the condition or not physicists must be left to determine. All that we need note is, that if there be any force in Professor Darwin’s argument, it is obvious that the crust is possessed of great rigidity, and could not be readily deformed by the mere weight of an ice-sheet. According to Dr. Drygalski, however, the presence of an ice-sheet, by reducing the temperature of the underlying crust, would bring about contraction, and in this way cause the surface to sink. When the ice-sheet had disappeared, then free radiation of earth-heat would be resumed, the depressed isogeotherms would rise, and a general warming of the upper portion of the lithosphere would take place. But the space occupied by the depressed section, owing to the spheroidal form of the earth, would be smaller than that which it occupied before sinking had commenced, and consequently when the ice vanished expansion of the crust would follow, and the land-surface would then rise again. The whole question is one for physicists to decide upon, but I may point out that if Drygalski’s explanation be well founded, then it is obvious that it throws no light upon the origin and subsequent disappearance of an ice-sheet. Somehow or other this ice-sheet comes into existence, and the cooling and contracting crust sinks below it; and that depressed condition of the glaciated area must continue so long as the ice-sheet remains unmelted. Re-elevation can only take place when, owing to some other cause or causes, the climate changes and the ice-sheet vanishes.

Those who advocate the “earth-movement hypothesis” as an explanation of the origin of extensive glaciation have welcomed Mr. Jamieson’s view as harmonising well with their conclusions. They contend, as we have seen, that glacial conditions were induced by an extensive upheaval of the crust in northern latitudes, accompanied by a depression of the Isthmus of Panama. They then proceed to point out that the ice-sheets brought about their own dissolution by pressing down the crust, and introducing with submergence a disappearance of glacial conditions. See now how much they take for granted. In the first place, they assume an amount of pre-glacial or early glacial elevation of northern regions for which not a scrap of evidence can be adduced, while they can give no proof of contemporaneous depression of the Isthmus of Panama. Next, relying on Mr. Jamieson’s hypothesis, they take for granted that the ice-sheets, called into existence by their postulated earth-movements, succeeded in depressing the earth’s surface even below its present level. That is to say, the land, which, according to them, was in glacial times some 3000 feet higher than now, sank down under the weight of its glacial covering for, say, 3600 feet in north-western Europe. In North America, in like manner, all the pre-glacial elevation was lost – the land sinking below its present level for some 200 feet in New England, for 520 feet at Montreal, for 1000 to 1500 feet in Labrador, and for 1000 to 2000 feet in the Arctic regions. Now, even if we concede the reasonableness of Mr. Jamieson’s hypothesis, and admit that a certain degree of deformation may take place under the mere weight of an ice-sheet, it is difficult to believe that the crust can be so readily deformed as the supporters of the “earth-movement hypothesis” seem to imply. If it could yield so readily to pressure, one is at a loss to understand how a great ice-sheet could accumulate – the ice would simply float off as the land subsided. Take the case of north-western Europe. The ice-sheet that covered Scotland did not attain, on the average, 3000 feet in thickness, and yet we are to suppose that it was able to depress the land for some 600 feet below its present level – that is to say, for 3600 feet below its assumed pre-glacial elevation. Either the ice depressed the crust to that remarkable extent, or the land upon which the ice accumulated was not nearly so high as the advocates of the “earth-movement hypothesis” have supposed. But the average I have taken for the thickness of the Scottish ice-sheet is excessive, for it was only in the low-grounds that the mer de glace attained such a depth. A large part of our country, however, is mountainous, and the mountain-tops were, of course, not nearly so thickly mantled with ice as the valleys. And the same to even a larger extent holds good for the Scandinavian peninsula. If we take the thickness of the Scandinavian ice-sheet that coalesced with that of Scotland as 4000 feet, we shall be over the mark. Now, I ask, is it possible to believe that a sheet of ice of that thickness actually pressed down the crust of the earth for not less than 3600 feet? But if we accept the “earth-movement hypothesis,” as it has been recently advocated, that is what we must believe. If we cannot do so, then we cannot accept the assumption of great elevation of the land in pre-glacial and glacial times. Let me put the case shortly: if the glacial marine beds and raised beaches of the Atlantic borders of Europe and North America owe their origin to depression induced by the weight of an ice-sheet, then it is quite certain that at the advent of glacial conditions the land could not have been so highly elevated as the advocates of the “earth-movement hypothesis” suppose. But if we are to accept the notion of great elevation of the land, then we must conclude that the submergence to which the raised beaches testify cannot have been caused by the pressure of ice-sheets.

It is hardly necessary to pursue this particular subject further, but before leaving it, attention may be drawn for a moment to the curious conclusion that the ice-sheets were self-destructive. One is left to guess at what particular stage the sinking process began, but if the earth’s crust were as readily deformed as the extreme views I have been examining would compel one to imply, then depression must have commenced almost immediately with the accumulation of snow and ice. The several ice-sheets must soon have attained their maximum thickness, and their disappearance must have been correspondingly rapid. And yet all the evidence goes to show that a glacial epoch endured for a comparatively long time – for a time sufficient to account for a prodigious amount of rock-erosion, and for the accumulation of vast sheets of glacial débris and fluvio-glacial detritus.77

If it be difficult to understand how the “earth-movement hypothesis” can account for the origin of one glacial epoch, the difficulty is not lessened when we remember that there are two or more such epochs to account for. And until the advocates of that hypothesis can furnish us with some reliable evidence, they can hardly expect us to believe in their mysterious upheavals and depressions of northern and temperate regions, and in the no less wonderfully rhythmic movements of the Isthmus of Panama. In fine, the views which I have been controverting seem to me to be untenable, inasmuch as they are founded on mere assumptions, and do not even give a reasonable and intelligible explanation of the phenomena of glaciated regions, while they practically ignore or leave unsolved the problem of interglacial conditions.

Some five-and-twenty years have now elapsed since my lamented friend and colleague, James Croll, published his well-known physical theory of the Glacial period. That theory, as you all know, has been frequently criticised by physicists and others, to whose objections Croll made a final reply in his Climate and Cosmology. In that work he has successfully defended his views, and even added considerably to the strength of his general argument. I am not aware that since then any serious objections to Croll’s theory have appeared. The only one indeed that seems to have attracted attention is that which has been urged especially by certain American geologists. Their belief is that the close of the Glacial period must have taken place at a much more recent date than Croll has inferred. And this belief of theirs is based upon various estimates which have been made as to the time required for the erosion of valleys and the accumulation of alluvial deposits since the Glacial period. Thus, according to Mr. Gilbert, the post-glacial gorge of Niagara, at the present rate of erosion, must have been excavated within 7000 years; while Mr. Winchell, from similar measurements of the post-glacial erosion of the Falls of St. Anthony, concludes that 8000 years have elapsed since the close of the Ice Age. I might cite a number of similar estimates that tend to show that since the close of the Glacial period only 7000 or 10,000 years have elapsed. What will archæologists say to this conclusion? We know that Egypt was already occupied by a civilised people nearly 6000 years ago, and their marvellously advanced civilisation at that time presupposes, according to Egyptologists, many thousands of years of development. Are we, then, prepared to admit that the close of the Ice Age coincided with the dawn of Egyptian civilisation? But all American observers are not so parsimonious with regard to post-glacial time. Thus Professor Spencer has given the age of the Falls of Niagara as 24,000 years, and he informed me recently that this does not represent half of the time since the formation of the third great series of glacial deposits of the Canadian uplands. In our own Continent similar estimates have been based on the rate of erosion of river-valleys, the rate of accumulation of alluvial deposits, of peat-bogs, of stalagmite in caves, and what not, with results that, to say the least, are rather discordant. The fact is that all such measurements and estimates, however carefully conducted and cautiously made, are in the nature of things unreliable. We are insufficiently acquainted with all the factors of the problem to be solved, and I cannot therefore agree with those who attribute much weight to conclusions based on such uncertain data. Dr. Croll’s theory may eventually be modified, but I feel sure that it will not be overturned by the inconclusive and unsatisfactory estimates to which I have referred. Moreover, opponents of that theory may be reminded that its truth does not rest on the accuracy of its author’s conclusion as to the date of the last Ice Age. That periods of high eccentricity of the earth’s orbit have occurred is beyond all doubt, but whether the formulæ employed by Croll in calculating the date of the last great cycle can be relied upon for that purpose is quite another question. At present, so far as I understand the facts, the glacial and the interglacial phenomena are explained by the astronomical theory, and by no other. It gives a simple, coherent, and consistent interpretation of the climatic vicissitudes of the Pleistocene and post-glacial periods, and in especial it is the only theory that throws any light on the very remarkable climates of interglacial times.

X.
The Glacial Succession in Europe. 78

For many years geologists have recognised the occurrence of at least two boulder-clays in the British Islands and the corresponding latitudes of the Continent. It is no longer doubted that these are the products of two separate and distinct glacial epochs. This has been demonstrated by the appearance of intercalated deposits of terrestrial, freshwater, or, as the case may be, marine origin. Such interglacial accumulations have been met with again and again in Britain, and they have likewise been detected at many places on the Continent, between the border of the North Sea and the heart of Russia. Their organic contents indicate in some cases cold climatic conditions; in others, they imply a climate not less temperate or even more genial than that which now obtains in the regions where they occur. Nor are such interglacial beds confined to northern and north-western Europe. In the Alpine Lands of the central and southern regions of our Continent they are equally well developed. Impressed by the growing strength of the evidence, it is no wonder that geologists, after a season of doubt, should at last agree in the conclusion that the glacial conditions of the Pleistocene period were interrupted by at least one protracted interglacial epoch. Not a few observers go further, and maintain that the evidence indicates more than this. They hold that three or even more glacial epochs supervened in Pleistocene times. This is the conclusion I reached many years ago, and I now purpose reviewing the evidence which has accumulated since then, in order to show how far it goes to support that conclusion.

In our islands we have, as already remarked, two boulder-clays, of which the lower or older has the wider extension southwards, for it has been traced as far as the valley of the Thames. The upper boulder-clay, on the other hand, does not extend south of the midlands of England. In the north of England, and throughout Scotland and the major portion of Ireland, it is this upper boulder-clay which usually shows at the surface. The two clays, however, frequently occur together, and are exposed again and again in deep artificial and natural sections, as in pits, railway-cuttings, quarries, river-banks, and sea-cliffs. Sometimes the upper clay rests directly upon the lower; at other times they are separated by alluvial and peaty accumulations or by marine deposits. The wider distribution of the lower till, the direction of transport of its included erratics, and the trend of the underlying roches moutonnées and rock-striæ, clearly show that the earlier mer de glace covered a wider area than its successor, and was confluent on the floor of the North Sea with the Scandinavian ice-sheet. It was during the formation of the lower till, in short, that glaciation in these islands attained its maximum development.

The interglacial beds, which in many places separate the lower from the upper till, show that after the retreat of the earlier mer de glace the climate became progressively more temperate, until eventually the country was clothed with a flora essentially the same as the present. Wild oxen, the great Irish deer, and the horse, elephant, rhinoceros, and other mammals then lived in Britain. From the presence of such a flora and fauna we may reasonably infer that the climate during the climax of interglacial times was as genial as now. The occurrence of marine deposits associated with some of the interglacial peaty beds shows that eventually submergence ensued; and as the shells in some of the marine beds are boreal and arctic forms, they prove that cold climatic conditions accompanied the depression of the land. To what extent the land sank under water we cannot tell. It may have been 500 feet or not so much, for the evidence is somewhat unsatisfactory.

The upper boulder-clay of our islands is the product of another mer de glace, which in Scotland would seem to have been hardly less thick and extensive than its predecessor. Like the latter, it covered the whole country, overflowed the Outer Hebrides, and became confluent with the Scandinavian inland-ice on the bed of the North Sea. But it did not flow so far to the south as the earlier ice-sheet.

It is well known that this later mer de glace was succeeded in our mountain-regions by a series of large local glaciers, which geologists generally believe were its direct descendants. It is supposed, in short, that the inland-ice, after retreating from the low-grounds, persisted for a time in the form of local glaciers in mountain-valleys. This view I also formerly held, although there were certain appearances which seemed to indicate that, after the ice-sheet had melted away from the Lowlands and shrunk far into the mountains, a general advance of great valley-glaciers had taken place. I had observed, for example, that the upper boulder-clay is often well developed in the lower reaches of our mountain-valleys – that, in fact, it may be met with more or less abundantly up to the point at which large terminal moraines are encountered. More than this, I had noticed that upland valleys, in which no local or terminal moraines occur, are usually clothed and paved with boulder-clay throughout. Again, the aspect of valleys which have been occupied by large local glaciers is very suggestive. Above the point at which terminal moraines occur only meagre patches of till are met with on the bottoms of the valleys. The adjacent hill-slopes up to a certain line may show bare rock, sprinkled perchance with erratics and superficial morainic detritus; but above this line, if the acclivity be not too great, boulder-clay often comes on again. These appearances are most conspicuously displayed in the southern Uplands of Scotland, particularly in south Ayrshire and Galloway, and long ago they led me to suspect that the local glaciers into which our latest mer de glace was resolved, after retreating continuously towards the heads of their valleys, so as to leave the boulder-clay in a comparatively unmodified condition, had again advanced and ploughed this out, down to the point at which they dropped their terminal moraines. Subsequent observations in the Highlands and the Inner and Outer Hebrides confirmed me in my suspicion, for in all those regions we meet with phenomena of precisely the same kind. My friends and colleagues, Messrs. Peach and Horne, had independently come to a similar conclusion; and the more recent work of the Geological Survey in the north-west Highlands, as they inform me, has demonstrated that after the dissolution of the general ice-sheet underneath which the upper boulder-clay was accumulated, a strong recrudescence of glacial conditions supervened, and a general advance of great valley-glaciers took place – the glaciers in many places coalescing upon the low-grounds to form united mers de glace of considerable extent.

The development of these large glaciers, therefore, forms a distinct stage in the history of the Glacial period. They were of sufficient extent to occupy all the fiords of the northern and western Highlands, at the mouths of which they calved their icebergs, and they descended the valleys on the eastern slopes of the land into the region of the great lakes, at the lower ends of which we encounter their outermost terminal moraines. The Shetland and Orkney Islands and the Inner and Outer Hebrides at the same time nourished local glaciers, not a few of which flowed into the sea. Such, for example, was the case in Skye, Harris, South Uist, and Arran. The broad Uplands of the south were likewise clothed with snow-fields that fed numerous glaciers. These were especially conspicuous in the wilds of Galloway, but they appeared likewise in the Peeblesshire hills; and even in less elevated tracts they have left more or less well-marked traces of their former presence.

It is to this third epoch of glaciation that I would assign the final scooping out of our lake-basins and the completion of the deep depressions in the beds of our Highland fiords. All the evidence, indeed, leads to the conviction that the epoch was one of long duration.

It goes without saying that what holds good for Scotland must, within certain limits, hold good also for Ireland and England. In Wales and the Cumberland lake district, and in the mountain-regions of the sister island, we meet with evidence of similar conditions. Each of those areas has obviously experienced intense local glaciation subsequent to the disappearance of the last big ice-sheet.

Attention must now be directed to another series of facts which help us to realise the general conditions that obtained during the epoch of local glaciation. In the basin of the estuary of the Clyde, and at various other places both on the west and east coasts of Scotland, occur certain clays and sands, which overlie the upper boulder-clay, and in some places are found wrapping round the kames and osar of the last great ice-sheet. These beds are charged with the relics of a boreal and arctic fauna, and indicate a submergence of rather more than 100 feet. In the lower reaches of the rivers Clyde, Forth, and Tay the clays and sands form a well-marked terrace, and a raised sea-beach, containing similar organisms, occurs here and there on the sea-coast, as between Dundee and Arbroath, on the southern shores of the Moray Firth, and elsewhere. When the terraces are traced inland they are found to pass into high-level fluviatile gravels, which may be followed into the mountain-valleys, until eventually they shade off into fluvio-glacial detritus associated with the terminal moraines of the great local glaciers. It is obvious, in short, that the epoch of local ice-sheets and large valley-glaciers was one also of partial submergence. This is further shown by the fact that in some places the glaciers that reached the sea threw down their moraines on the 100-feet beach. It must have been an epoch of much floating ice, as the marine deposits contain now and again many erratics, large and small, and are, moreover, frequently disturbed and contorted as if from the grounding of pack-ice.

The phenomena which I have thus briefly sketched suffice to show that the epoch of local glaciation is to be clearly distinguished from that of the latest general mer de glace. I have long suspected, indeed, that the two may have been separated by as wide an interval of time as that which divided the earlier from the later epoch of general glaciation. Again and again I have searched underneath the terminal moraines, in the faint hope of detecting interglacial accumulations. My failure to discover these, however, did not weaken my conviction, for it was only by the merest chance that interglacial beds could ever have been preserved in such places. I feel sure, however, that they must occur among the older alluvia of our Lowlands. Indeed, as I shall point out in the sequel, it is highly probable that they are already known, and that we have hitherto failed to recognise their true position in the glacial series.

Although we have no direct evidence to prove that a long interglacial epoch of mild conditions immediately preceded the advent of our local ice-sheets and large valley-glaciers, yet the indirect evidence is so strong that we seem driven to admit that such must have been the case. To show this I must briefly recapitulate what is now known as to the glacial succession on the Continent. It has been ascertained, then, that the Scandinavian ice has invaded the low-grounds of Germany on two separate occasions, which are spoken of by Continental geologists as the “first” and “second” glacial epochs. The earlier of these was the epoch of maximum glaciation, when the inland ice flowed south into Saxony, and overspread a vast area between the borders of the North Sea and the base of the Ural Mountains. This ice-sheet unquestionably coalesced with the mer de glace of the British Islands. Its bottom-moraine and the associated fluvio-glacial detritus are known in Germany as “Lower Diluvium,” and the various phenomena connected with it clearly show that the inland-ice radiated outwards from the high-grounds of Scandinavia. The terminal front of that vast mer de glace is roughly indicated by a line drawn from the south coast of Belgium round the north base of the Harz, and by Leipzig and Dresden to Krakow, thence north-east to Nijnii Novgorod, and further north to the head-waters of the Dvina and the shores of the Arctic Sea near the Tcheskaia Gulf.

77.It must not be inferred from the above remarks that I deny the possibility of deformation of the crust having been induced by the old ice-sheets. The geological evidence is certainly suggestive of such having been the case. But I much doubt whether the sinking of the surface was brought about by the mere weight of the ice pressing the crust down into a subjacent liquid layer. Dr. Drygalski’s explanation would better account for the geological phenomena, but, according to Rev. Osmond Fisher, it cannot be maintained.
78.Trans. Royal Soc. Edinburgh, vol. xxxvii. (1892).
Возрастное ограничение:
12+
Дата выхода на Литрес:
28 октября 2017
Объем:
563 стр. 6 иллюстраций
Правообладатель:
Public Domain
Аудио
Средний рейтинг 4,2 на основе 377 оценок
Аудио
Средний рейтинг 4,7 на основе 616 оценок
Черновик, доступен аудиоформат
Средний рейтинг 4,6 на основе 216 оценок
Черновик
Средний рейтинг 5 на основе 17 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,2 на основе 988 оценок
Текст, доступен аудиоформат
Средний рейтинг 5 на основе 441 оценок
Аудио
Средний рейтинг 4,6 на основе 689 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,3 на основе 490 оценок
По подписке
Аудио
Средний рейтинг 5 на основе 435 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок
Текст
Средний рейтинг 0 на основе 0 оценок