Дарвинизм в XXI веке

Текст
6
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Дарвинизм в XXI веке
Дарвинизм в XXI веке
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 1338  1070 
Дарвинизм в XXI веке
Дарвинизм в XXI веке
Аудиокнига
Читает Максим Суслов
749 
Подробнее
Шрифт:Меньше АаБольше Аа

Эпигенетика и эпигонство, или Злоприобретенные признаки

Другая разновидность современного неоламаркизма связывает свои надежды с так называемым эпигенетическим наследованием. Ссылки на работы, в которых наблюдался этот эффект, можно найти у многих неоламаркистов конца ХХ века (в частности, в упомянутой выше книге Стила и его соавторов), но “звездный час” этой идеи пробил совсем недавно. Рубежом стал 2014 год: количество работ в этой области, превысив критическую массу, сокрушило теоретические табу. Если еще совсем недавно ученые, обсуждая результаты исследований в этом направлении, старались избегать слов “наследование приобретенных признаков” (по крайней мере, в профессиональных изданиях), то сейчас эти слова стали чуть ли не знаменем нового направления. Победный клич “Ламарк все-таки был прав!” пронесся не только по блогам и телеканалам, но и по страницам вполне респектабельных научных журналов. Изучение того, как воздействия, перенесенные отцами и матерями, сказываются на детях, внуках и правнуках, буквально на глазах превратилось из сомнительной маргинальной темы в одно из самых модных и респектабельных направлений исследований.

Напомним вкратце, о чем идет речь. Как мы уже знаем, наследственные признаки не только организма в целом, но и каждой его клетки определяются генами. При этом все клетки одного организма содержат одинаковый набор генов (если не считать соматических мутаций – случайных единичных ошибок, неизбежно возникающих при многократном делении клеток, перед каждым из которых нужно скопировать весь геном). Те огромные различия в строении и функциях разных клеток, которые мы наблюдаем, возникают из-за различий в интенсивности работы генов – то есть считывания с них белка. В каждом типе клеток с одних генов матричные РНК снимаются чаще, с других – реже, а с третьих не снимаются совсем. Некоторые гены работают только на определенном (иногда совсем коротком) этапе эмбрионального развития или только при наступлении особых условий – с которыми их конкретный обладатель может никогда в жизни не столкнуться.

Естественно, ученые попытались выяснить механизмы, регулирующие эту активность. Таких механизмов оказалось много, они сложным образом взаимодействуют друг с другом. В частности, еще в 1970-х годах было обнаружено, что активность генов сильно зависит от навешенных на них химических меток. Например, есть ферменты, которые могут присоединять к цитозину (одному из азотистых оснований, служащих буквами генетического кода) метильную группу. Чем больше цитозинов в конкретном гене метилировано, тем ниже его активность. Впрочем, метильные метки могут быть и сняты так же, как навешены – специальными ферментами. Еще одна группа ферментов приделывает разные молекулярные добавки к гистонам – белкам, с которыми связана ДНК в ядре клетки. Эти модификации также влияют на интенсивность работы тех генов, с которыми связана данная белковая молекула. Известны и иные механизмы такого рода. Все они отличаются тем, что никак не меняют “текст” гена и химическую природу считываемого с него белка, но заметно влияют на интенсивность этого считывания – а значит, и на концентрацию данного белка в клетке, ткани или организме в целом.

Откуда фермент знает, какой участок ДНК и когда именно ему нужно метилировать или деметилировать – пока не очень понятно. Зато сравнительно недавно удалось выяснить, что некоторые из эпигенетических меток могут при удвоении ДНК воспроизводиться на дочерней цепочке. Далее, как и следовало ожидать, оказалось, что благодаря этому распределение меток, имевшее место в материнской клетке, может быть унаследовано (хотя бы отчасти) дочерними. Наконец, была открыта и возможность передачи эпигенетических особенностей потомству, появляющемуся на свет в результате полового размножения. А поскольку, как уже говорилось, эпигенетические метки подвержены внешним воздействиям (и, по идее, служат средством обратной связи, благодаря которой режим работы гена может меняться в соответствии с текущими задачами), это вполне естественно рождало надежду найти нечто, возникшее у организма в ходе его жизни и затем переданное потомству. Проще говоря – найти наследование приобретенных признаков. Такая возможность привлекла многих исследователей – и в какой-то момент победные сообщения об открытии всё новых и новых примеров эпигенетического наследования заполонили научную прессу.

Как ни странно, в этом хоре ликующих голосов практически никто не вспоминал, что сам феномен подобного наследования известен в биологии вот уже второе столетие. Еще в 1913 году известный в ту пору немецкий биолог Виктор Йоллос обнаружил, что морфологические изменения, возникающие у инфузорий-туфелек при раздражении, не исчезают при делении клетки и сохраняются, таким образом, в течение нескольких поколений (если только инфузория не переходит к половому размножению). Инфузории, конечно, объект специфический, и с точки зрения наших сегодняшних знаний об организации их генетического аппарата этот эффект кажется не столь уж удивительным[88]. Однако вскоре аналогичные явления были обнаружены и у ряда многоклеточных организмов с “нормальным” половым размножением и “правильной” генетикой. Так, например, колорадские жуки, проходившие стадию куколки при необычно высокой температуре, отличаются характерными изменениями окраски. Оказалось, что эти изменения сохраняются (постепенно слабея) у нескольких поколений их потомков, проходивших фазу куколки уже при обычных температурах.

Все это очень сильно напоминало обычные индивидуальные модификации, столь любимые биологией XIX века, – вспомним пересаженные растения Боннье, солоноводных рачков Шманкевича и прочие примеры определенной изменчивости. Однако про обычные модификации к тому времени уже было известно, что они не наследуются. Новый же тип модификаций отличался способностью передаваться (хотя и неустойчиво, с постепенным затуханием) нескольким следующим поколениям. С легкой руки Йоллоса такие изменения получили название длительных модификаций (Dauermodifikationen).

Длительным модификациям не повезло: их открытие пришлось на время разочарования биологов в неоламаркизме и бурного расцвета классической генетики, быстро превращавшейся в царицу биологии. В ту биологическую картину мира, которая формировалась на основе идей генетики, длительные модификации (и вообще негенетическое наследование) вписывались с большим скрипом. К тому же эффект был довольно редким и плохо воспроизводился. Но главное – у тогдашней биологии практически не было методов, позволяющих исследовать механизмы этого явления. Феномен исправно упоминался в солидных учебниках и справочной литературе (как правило, мелким шрифтом или в примечаниях), но почти не исследовался и вообще находился где-то на периферии поля зрения науки. А когда в конце ХХ века были открыты эпигенетические механизмы регуляции активности генов и возможность их наследования, о феномене длительных модификаций уже мало кто помнил: современные молодые ученые редко интересуются публикациями вековой давности, тем более такими, которые в последние десятилетия почти никто не цитировал.

Впрочем, вопрос о времени и авторстве открытия эпигенетического наследования и даже об эквивалентности йоллосовских длительных модификаций изучаемым ныне эпигенетическим феноменам – это, в конце концов, лишь вопрос истории науки. Если не придираться к деталям, то все примерно так и должно быть: сто лет назад открыли интересный феномен, никто его с тех пор не отрицал, но не хватало знаний для его объяснения, а главное – методов для изучения. Теперь такие знания и методы появились – и изучение этого класса явлений идет полным ходом. А уж что за сто лет подзабылось имя опередившего свою эпоху первооткрывателя – обидно, конечно, но понятно и простительно.

Куда больше вопросов и недоумения вызывает не историческая, а содержательная сторона дела. Если непредвзято взглянуть, с одной стороны, на фактические сведения об эпигенетическом наследовании, а с другой – на их теоретическую трактовку энтузиастами (и особенно на их предполагаемую эволюционную роль), испытываешь глубокое удивление и даже некоторую неловкость, как при наблюдении попыток запрячь в карету морского конька.

Мы привыкли думать, что любые модификации (как и вообще любые реакции организма на внешние изменения) в той или иной степени адаптивны. Все концепции, приписывающие модификациям какое бы то ни было эволюционное значение, основаны именно на этом и подразумевают такое свойство модификаций как само собой разумеющееся. Адаптивными “по умолчанию” считаются и эпигенетические изменения, в том числе и наследуемые.

Между тем, если посмотреть на конкретные фактические результаты, служащие основой для рассуждений о “недооцененной” эволюционной роли эпигенетики, то нельзя не заметить, что их адаптивность в лучшем случае неочевидна и может быть им приписана только посредством специальных дополнительных предположений. Например, показано, что при содержании крыс в стрессовых условиях уровень кортизона (одного из гормонов, опосредующих стресс-реакцию) у них будет стабильно повышенным, и это повышение можно отследить вплоть до четвертого поколения – даже если все эти поколения, кроме первого, будут жить в комфорте. Очень интересный эффект – но можно ли считать его адаптивным? Стресс-синдром адаптивен именно как оперативная и краткосрочная реакция организма на неожиданные (и, как правило, неприятные) изменения внешних условий, хронический же стресс действует разрушительно, провоцируя развитие ряда характерных патологий. Можно, конечно, придумать теоретическую схемку, в которой “априорно” повышенный уровень стрессового гормона оказывается полезным для организма – но это нужно именно специально придумывать, а потом еще отдельно доказывать, что такая схема действительно реализуется в данном случае.

 

Часто же изменения, передаваемые эпигенетическим путем, выглядят явно контрадаптивными, понижающими жизнеспособность унаследовавших их потомков. Возьмем наугад несколько работ, где исследуются эффекты эпигенетического наследования (доказанные или предполагаемые) – и что мы видим? Стресс, пережитый отцом, повышает вероятность развития неврозов и депрессии у его детей. Нехватка фолиевой кислоты (витамина В9) в рационе самцов мышей повышает риск пороков развития у их потомства. Воздействие никотина на предков снижает у потомков (вплоть до правнуков) легочную функцию, увеличивает риск астмы и повышает (!) концентрацию рецепторов к никотину – то есть в случае, если потомки тоже столкнутся с никотином, им для достижения того же эффекта хватит меньших доз. Если самец крысы страдает ожирением, то у его дочерей увеличивается риск развития сахарного диабета. И так далее, и тому подобное. И где тут, спрашивается, адаптивность? Это больше похоже на передачу последующим поколениям хронической дисфункции – своего рода “грехов отцов”, которые падают на их потомков, если не до седьмого, как требует Писание, то, по крайней мере, до второго-третьего колена.

Как мог возникнуть и эволюционно закрепиться столь неудобный для своих обладателей механизм наследования, каков его биологический смысл (и есть ли он у него) – вопрос отдельный и интересный. Он требует и обсуждения, и специальных исследований – и с одним таким исследованием, дающим хотя бы намек на возможную разгадку этой загадки, мы познакомимся в следующей подглавке этой главы. Но куда чаще попытки теоретического истолкования обнаруженных феноменов сворачивают в наезженную колею “наследования приобретенных признаков”, “ламарковской эволюции” и тому подобных интеллектуальных шаблонов полутора-двухвековой давности. От подобных построений порой веет некоторой шизофреничностью: в гипотезах и моделях обсуждается накопление адаптивных изменений, а иллюстрациями и примерами служат явные дезадаптации. И самое поразительное – что авторы таких работ словно бы не замечают этого кричащего противоречия! Впрочем, тем больше доверия к приводимым и обсуждаемым ими фактам. Тут уж никак не скажешь, что ученые-де видят то, что хотят увидеть: в том-то и дело, что хотят увидеть адаптивность и эволюционный механизм, а реально видят трансгенерационные травмы и дисфункции!



Возможная роль эпигенетического наследования в эволюционных процессах вызывает большие сомнения и с чисто теоретической точки зрения. Напомним: все известные сегодня эпигенетические механизмы – это регуляторы интенсивности работы того или иного гена. Под действием внешних факторов эти регуляторы принимают то или иное положение, и оно в той или иной мере наследуется. При продолжении и усилении действия тех или иных факторов положение регуляторов теоретически может с каждым поколением все больше сдвигаться в определенную сторону – но только до некоторого предела. Как известно всякому, кто пользовался приемником или электромясорубкой, любой регулятор мощности ограничен двумя крайними положениями – “выкл.” и “макс.”. И все, что он может делать, – это менять мощность в промежутке между этими значениями. То же самое относится и к молекулярным регуляторам.

Для индивидуального развития и повседневного функционирования организма это не так уж мало. Достаточно вспомнить, что ход едва ли не всех формообразовательных процессов в эмбриогенезе определяется не просто наличием или отсутствием того или иного сигнального вещества (морфогена), но скорее его концентрацией, часто – соотношением концентраций разных морфогенов в каждой конкретной точке зародыша. Да и в последующей жизни едва ли не все существенные характеристики индивидуума – от физических возможностей до распределения активности в течение суток, от времени взросления до склада характера – зависят именно от концентрации определенных молекул в определенных структурах, то есть от интенсивности работы соответствующих генов.

Но совершенно непонятно, как то или иное положение регуляторов может влиять на эволюционные процессы. Во-первых, любой признак, сформировавшийся в результате него, по определению лежит в пределах нормы реакции[89] данного генотипа – то есть с эволюционной точки зрения этот признак уже существует, и то или иное положение регуляторов только обеспечивает его проявление в фенотипе (или, наоборот, препятствует таковому). То, что механизмы проявления признака в ряде случаев имеют большое время срабатывания, захватывающее срок жизни нескольких поколений, само по себе очень интересно, но не отменяет того очевидного факта, что эпигенетические изменения не могут создать никакого эволюционно нового признака. Во-вторых, когда выше мы говорили о важной роли именно концентраций сигнальных веществ (а значит, интенсивности работы соответствующих генов), мы не зря каждый раз уточняли – речь идет о концентрациях этих веществ в данный момент в данной точке тела. Но пространственно-временное распределение активности того или иного гена как раз и не может быть предметом эпигенетического наследования: единственная клеточка, с которой начинается развитие всякого сложного организма, может унаследовать от родителей только какое-то одно конкретное положение регуляторов. Потом, у разных клеток-потомков и на разных этапах жизни, оно неизбежно будет меняться – независимо от того, каким оно было исходно. Да, конечно, вполне вероятно, что исходный, допустим, уровень метилирования того или иного гена в оплодотворенной яйцеклетке как-то влияет на уровень его метилирования в тех тканях, где он работает (и именно эти влияния и “ловят” современные работы по эпигенетическому наследованию). Но никакой сложной картины таким образом не передашь и не унаследуешь: цвет бумаги или ткани, на которой выполнен рисунок, может в той или иной мере влиять на его колорит, но не на само содержание. К тому же мы знаем, что и эмбриологические, и физиологические механизмы обычно нацелены на достижение определенного результата – независимо от того, с какого исходного уровня им приходится начинать работу. Именно поэтому эффекты эпигенетического наследования обычно удается выявлять только статистически, на больших выборках – как несколько повышенную вероятность возникновения чего-то, что может возникнуть и без них.

Так что все рассуждения об эволюционной роли эпигенетического наследования – это, скорее всего, рассуждения о том, чего нет.

Сказанное, разумеется, не означает, что сам этот феномен не важен или неинтересен. Выше уже говорилось об интригующей загадке дезадаптивности большинства известных примеров такого наследования. Не менее странными выглядят и другие свойства этих явлений. Например, почему передаваемые таким образом особенности очень часто (хотя в разных случаях по-разному) оказываются чувствительными к полу родителя и потомка: для некоторых удается зафиксировать только передачу от отцов к сыновьям, для других – от матерей к дочерям, для третьих – от отцов к дочерям и т. д.?[90]

Но, пожалуй, самое важное – это то, что изучение эпигенетических механизмов открывает возможность продвинуться в понимании принципов управления активностью определенных генов в определенных клетках и тканях. Каким образом, через какие молекулярные события те или иные сигналы из внешней среды изменяют расстановку эпигенетических меток на определенных участках генома? Как это происходит в половых клетках, где “нужные” гены заведомо не работают? Как влияет уже имеющаяся расстановка меток на их изменение под действием внешних сигналов?

Ответов на эти вопросы пока нет. Но сегодня уже можно с удовлетворением сказать, что не все ученые оказались зачарованы призраком “эпигенетического ламаркизма”. Пока одни ликуют по поводу якобы доказанной “правоты Ламарка”, другие пытаются разобраться в том, как же на самом деле соотносятся изменения режима работы тех или иных генов в ходе жизни индивидуума с эволюционными процессами.

“…Что любое движенье направо начинается с левой ноги”

В сентябре 2015 года один из ведущих научных журналов мира – Nature – опубликовал очередную работу, посвященную экспериментальной эволюции тринидадских гуппи – тех самых, о которых мы говорили в главе “Отбор в натуре”. Объектом нового исследования группы ученых во главе с одним из основных участников “Проекта Гуппи” Дэвидом Резником стали четыре популяции гуппи. Популяция № 1 жила в относительно большой и глубокой реке с немалым числом хищников, самым опасным из которых для гуппи была хищная цихлида Crenicichla frenata. Популяция № 2 обитала в маленьком ручье, где хищников не было вообще. Молекулярно-генетический анализ показал, что популяция № 2 когда-то отпочковалась от популяции № 1, но как давно это случилось, оставалось неизвестным – хотя было ясно, что она живет в безопасных водах уже много поколений. Популяции № 3 и № 4 ученые создали сами, взяв некоторое число рыбок из популяции № 1, пересадив их в заводи без хищников и подождав, пока там сменятся три-четыре поколения (как мы помним, минимальный срок для наступления заметных эволюционных изменений). По сути эти две популяции воспроизводили популяцию № 2 на самом начальном этапе ее независимой эволюции.

Первым делом ученые взяли достаточное количество взрослых самцов из всех четырех популяций и измерили активность всех генов, работающих в клетках их мозга (это можно сделать, просто подсчитав количество одновременно присутствующих в клетках матричных РНК, снятых с каждого гена). Сравнив активность каждого отдельного гена в разных популяциях, они выявили 135 генов, активность которых в дочерних популяциях отличалась от их активности в популяции № 1. Причем активность каждого из этих генов во всех трех дочерних популяциях была смещена в одну и ту же сторону (увеличена или уменьшена) по отношению к материнской. Это позволяло предположить, что эти сдвиги отражают не случайные различия, а именно приспособление к новым условиям обитания – отсутствию хищников. Активность генов зависит как от внешних сигналов, так и от “содержания” других областей генома – регуляторных участков ДНК, генов так называемых факторов транскрипции (сигнальных белков, регулирующих интенсивность работы других генов) и т. д. – и в меру этой зависимости подлежит действию естественного отбора. Так что изменения в активности 135 генов могли быть суммой “быстрой” фенотипической (эпигенетической) реакции и генетических изменений под действием естественного отбора.

Каков же вклад каждого из этих факторов? Чтобы выяснить это, ученые взяли еще одну группу самцов из популяции № 1 и рассадили по двум аквариумам с проточной водой. В один вода поступала из другого аквариума, где жила хищная креницихла, которой ежедневно скармливали по две гуппи – так что гуппи из первого аквариума постоянно чувствовали запах хищника и “феромон тревоги”, выделяемый его жертвами.

 

Поскольку рыбки были из популяции № 1, для них эти пугающие сигналы были привычными – в своей родной речке они тоже постоянно сталкивались с ними. Через другой аквариум текла просто чистая вода без всяких следов присутствия хищника – и это для рыбок из популяции № 1 было совершенно новой ситуацией.

Через две недели (довольно большой срок в масштабах гуппиной жизни) ученые сравнили активность уже известных им 135 генов у гуппи из двух аквариумов. Поскольку геном рыбок измениться не мог, различия в активности генов в этом эксперименте могли отражать только индивидуальную фенотипическую реакцию на изменившиеся условия.

И вот тут выяснилось самое интересное. Из 135 исследованных генов 120 (89 %) отреагировали на исчезновение хищников изменением активности в сторону, противоположную той, в которую она менялась в ходе эволюционного приспособления к отсутствию хищников. То есть те гены, которые в ходе эволюции увеличивали свою активность, в ходе индивидуальной реакции ее уменьшали – и наоборот. Наблюдалась даже некоторая пропорциональность: чем сильнее интенсивность работы того или иного гена отклонялась от исходных значений у рыбок, только что столкнувшихся с отсутствием хищника, – тем больше было ее отклонение в противоположную сторону через три-четыре поколения жизни в безопасности. А те 15 генов, у которых направление индивидуальных изменений активности совпало с эволюционным, отличались наиболее слабыми изменениями ее в обоих случаях.

Какое все это имеет отношение к вопросу об эволюционной роли эпигенетических эффектов? Самое прямое: изменения активности генов в ходе жизни особи (в отличие от тех, что происходят в ряду поколений) – это и есть эти самые эпигенетические эффекты в чистом виде. Правда, группа Резника не изучала возможность и степень их наследования – этого не позволяли применяемые методы измерения активности генов. Но и без этого картина достаточно красноречива: эпигенетические сдвиги не “предвосхищают” последующие эволюционные изменения, не “прокладывают пути” для них, а уводят организм куда-то совсем не туда.

Конечно, такая картина получена хотя и для очень большого числа генов, но все-таки для единственного вида и для адаптации к единственному фактору – исчезновению хищников. Но вспомним парадоксальные результаты работ по “эпигенетическому ламаркизму”: едва ли не все они обнаруживают дезадаптивные эпигенетические изменения. В свете работы группы Резника противоположная направленность эпигенетических и эволюционных сдвигов предстает уже не странным невезением энтузиастов-исследователей, а общей закономерностью. Кстати, сами авторы “гуппиного” исследования так прямо и пишут, что фенотипическую пластичность можно использовать для прогноза направления эволюции под действием того или иного нового фактора – например, глобального потепления. Мол, глянул, как изменилась активность тех или иных генов у первого поколения, попавшего под действие этого фактора, – и уверенно предсказываешь, что в эволюции все будет наоборот.

Конечно, если в свете этого оглянуться на историю эволюционной идеи в биологии, на язык невольно запросятся иронические комментарии. Сколько квадратных километров бумаги было исписано за последние двести лет глубокомысленными словесами о “жизненном порыве”, “воле”, “стремлении”, “аккумуляции усилий” и всем таком прочем, что позволяет животному самому влиять на свою будущую эволюцию! Сколько блестящих умов – от Ламарка до Анри Бергсона и Бернарда Шоу – обольщались этой красивой идеей! Сколько упреков, насмешек, патетических обличений было обрушено на “догматиков” – дарвинистов, злостно игнорирующих эту великую творческую силу! И вот оказывается, что эта великая сила способна только создавать дополнительные препятствия на пути реальной эволюции. Разгребать которые приходится все тому же невозмутимому и трудолюбивому “демону Дарвина” – естественному отбору.

Но ирония – иронией, а как же все-таки понимать этот результат? Сами авторы работы предлагают простую трактовку: именно неадаптивность “первой реакции” активности того или иного гена – причина особенно быстрой эволюции ее в ближайших поколениях. Чем вреднее будет модификационное (негенетическое) изменение того или иного признака, чем сильнее оно осложнит жизнь своих обладателей – тем ценнее будет любое мутационное (генетическое) изменение, сдвигающее этот признак в обратную, полезную сторону, тем жестче будет отбор в пользу такого генетического варианта. И тем быстрее, следовательно, этот признак будет эволюционировать в ближайших поколениях. Эта мысль даже вынесена в название статьи Резника и его коллег: “Неадаптивная пластичность усиливает быструю адаптивную эволюцию экспрессии генов в природе”.

Это рассуждение звучит вполне правдоподобно и к тому же косвенно подтверждается некоторыми деталями (сужением размаха колебаний уровня активности для изученных генов в “безопасных” популяциях по сравнению с “живущими в опасности”). Однако остается вопрос: почему же “быстрые” изменения активности генов столь неотвратимо неадаптивны? Даже если они никак не связаны “по смыслу” с тем, чего требуют от организма изменившиеся условия среды, – почему бы им хотя бы в половине случаев не оказаться полезными? Ну или хотя бы нейтральными? Собственно, почему эти гены вообще закономерно реагируют на данное изменение в среде, если эта реакция никак не содействует адаптации к нему?

Вспомним комментарий Владимира Фридмана (см. главу “Отбор в натуре”) к более ранним опытам с гуппиными популяциями, в которых в безопасные дотоле заводи вселяли хищников (то есть делали нечто противоположное тому, чем занималась группа Резника): изменения в индивидуальном поведении рыбок и эволюционные изменения в популяции пошли в разных и до некоторой степени противоположных направлениях. Поведение рыбок (особенно самцов) изменилось в сторону большей заботы о личной безопасности в ущерб заботе о размножении. А в ряду поколений изменения шли в сторону роста “вложения” в размножение за счет уменьшения “вложений”

в собственный размер и безопасность. По сути дела Фридман на чисто фенотипическом уровне заметил тот же парадокс, который сейчас группа Резника наглядно показала на уровне генетическом и эпигенетическом. И то, что при рассмотрении одной лишь активности генов и ее изменений кажется загадочным и противоестественным, при взгляде на фенотипическое выражение приобретает вполне внятный смысл.

Получается, что мы (как и авторы статьи в Nature) не вполне правы, называя индивидуальные изменения “контрадаптивными” или “неадаптивными” на том лишь основании, что они противоречат последующим эволюционным изменениям. Возможно, что на самом деле эти сдвиги по-своему адаптивны – только это совсем другая стратегия адаптации, ставящая во главу угла другие приоритеты и потому плохо совместимая с адаптацией эволюционной.

Пояснить сказанное можно такой аналогией. Представим себе авиаконструктора, которому нужно, допустим, модернизировать истребитель. Ему приходится учитывать целый ряд противоречащих друг другу требований: машина должна летать быстрее, чем предыдущая модель (и чем самолеты противника), но при этом нельзя уменьшать ее маневренность, ослаблять вооружение, уменьшать время, которое она способна находиться в воздухе, и т. д. Чтобы улучшить одни и сохранить на прежнем уровне другие важные в бою характеристики, конструктор решает пожертвовать долговечностью машины – исходя из того, что подавляющее большинство этих самолетов все равно не доживет до опасной степени износа. Но вот истребитель спроектирован, принят на вооружение, поступил в войска и оказался там на попечении аэродромных техников. Техник не имеет возможности существенно изменить конструкцию самолета, да и вообще его задача – не обеспечить превосходство данной модели, а поддерживать в наилучшем из возможных состояний конкретную машину. Поэтому он будет стараться улучшить то, что он может улучшить, – в частности, продлить ресурс самолета, то есть сделать его более долговечным. И даже не задумается о том, что это противоречит логике изменений, внесенных конструктором, – да и всему тренду развития истребительной авиации.



Можно предположить, что если не во всех, то во многих случаях примерно так же соотносятся индивидуальные изменения с эволюционными. Механизмы индивидуальной пластичности не могут сколько-нибудь существенно изменить морфологию данной особи, не говоря уж об особенностях индивидуального развития, которое она давно прошла. Они могут изменить только ее поведение и – в тех или иных пределах – “текущую” физиологию. И меняют их так, чтобы обеспечить максимальную безопасность и благополучие данной особи. Именно под эту задачу эволюционно формировались сами эти механизмы: их наличие выгодно, если наступившие перемены окажутся краткой полосой, которую надо просто пережить любой ценой. Если же оказывается, что перемены – всерьез и надолго (хотя бы на несколько поколений), в дело вступает естественный отбор, изменившееся направление которого меняет саму “конструкцию”. Но отбор работает не с индивидуальными особями, а с генами, и потому его приоритеты могут быть совсем иными.

Разумеется, это только одна из возможных гипотез. Разнонаправленность индивидуальных и эволюционных изменений может объясняться чем-нибудь совсем иным – например, ошибками компенсационных механизмов. Вспомним, что в отсутствие хищников самцу выгодно быть цветастым и уделять брачным демонстрациям как можно больше времени и сил. Но когда хищники исчезли внезапно, может резко увеличиться частота встреч с самцами-конкурентами – отчасти из-за реального роста никем не поедаемой популяции, отчасти из-за того, что все разом перестали прятаться. А частое лицезрение соперников приводит к стрессу, который угнетает и яркую окраску, и сексуальную активность. Через три-четыре поколения естественный отбор исправит эту ошибку (например, повысив порог стресс-реакции), изменения пойдут в “правильную” сторону – но это будет уже потом.

88В клетке инфузории имеются два ядра: большое (макронуклеус) и малое (микронуклеус). Малое ядро содержит обычный диплоидный набор хромосом и при делении клетки ведет себя как обычное ядро: хромосомы спирализуются, выстраиваются по экватору, расходятся к полюсам и т. д. При этом с ДНК малого ядра почти не снимаются матричные РНК – эта ДНК используется только как матрица для производства дополнительных копий генома, содержащихся в большом ядре. Последнее содержит в сотни раз больше хромосом, чем малое ядро, и при делении клетки разделяется без митоза, чисто механически, при этом многие его гены не прекращают работать. Таким образом то распределение активности генов, которое имело место перед делением, может в значительной мере сохраняться и после него, поддерживая морфологические изменения.
89О том, что это такое, мы будем подробно говорить в главе 11.
90Конечно, напрашивается тривиальное объяснение: исследователи, горячо желающие обнаружить хоть какой-нибудь “эффект”, группируют полученные данные так и сяк, пока в каком-то попарном сравнении заветное p-value (вероятность того, что обнаруженные различия случайны) не окажется ниже хотя бы первого “порога достоверности” – 0,05. Но пока такие манипуляции не доказаны, следует исходить из того, что обнаруженные исследователями пол-специфичные эффекты действительно существуют.
Бесплатный фрагмент закончился. Хотите читать дальше?
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»