Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 928  742,40 
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул
Аудиокнига
Читает Алла Галицкая
579 
Подробнее
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул
Шрифт:Меньше АаБольше Аа

Kate Biberdorf

It’s Elemental: The Hidden Chemistry in Everything

© 2021 by Kate Biberdorf

Translation copyright © 2023 by Irina Sysoeva

© Сысоева И., перевод на русский язык, 2024

© Оформление. ООО «Издательство «Эксмо», 2024

* * *

Моей учительнице химии, миссис Келли Пэлсрок


Введение

Ботаникам вроде нас позволено быть неиронично увлеченными каким-либо занятием.

Мы даже можем просто подпрыгивать в кресле вверх-вниз, и это сойдет нам с рук.

…Если кто-то называет вас ботаником, он скорее всего имеет в виду, что вам нравится заниматься чем-то всерьез.

Джон Грин

Я хочу начать эту книгу с признания.

Я ботаник, и я одержима химией.

Я – химик, мой муж, Джош, – химик, и большая часть наших друзей тоже химики. (Не все, но у каждого свои недостатки.) Знаете, я могу завести случайную беседу о кварках. На романтическом вечере мы с Джошем обсуждали исследование, получившее Нобелевскую премию, и горячо спорили о том, какой же элемент из периодической таблицы является лучшим – очевидно же, что это палладий. Однако я понимаю, что не все люди такие, как я и мой муж. Точнее, большинство людей не такие.

В химии тяжело разобраться. Наука в принципе дело непростое. Вы неизбежно сталкиваетесь со множеством непонятных терминов и правил, которые кажутся чертовски сложными. И это особенно актуально, если мы говорим о химии, ведь мы не можем наблюдать ее процессы своими глазами.

Чтобы лучше разобраться в биологии, вы можете, скажем, препарировать лягушку. На уроке физики учитель может наглядно показать вам некоторые физические свойства, например ускорение. Но я не могу показать вам атом.

Даже мои близкие или друзья не всегда понимают, чем именно я занимаюсь. Например, Челси, моя лучшая подруга. Она очень умная, в целом разбирается в науке и работает в области, связанной с химией, – она ювелир. Но Челси никогда не «понимала» химию, которую преподают в старших классах. И если меня этот предмет увлекал и приводил в восторг, то она каждый урок сидела потерянная и скучающая. Тогда я не могла понять, почему уже на второй год Челси забросила уроки химии. Но сейчас понимаю. Я вижу таких студентов почти каждый день.

Я профессор в Техасском университете в Остине, преподаю предмет «Химия в контексте». Это вводный курс для студентов, которые, возможно, больше никогда не возьмут уроки естествознания. Просто представьте молодую девушку, у которой основная дисциплина английский язык… И она считает, что естествознание – это предмет, за который вполне можно получить тройку. Представили? Вот это я и пыталась вам объяснить.

Однажды, в самый первый день занятий, студент задал мне вопрос о кварках, и я настолько увлеклась, что мое объяснение закончилось разговором о субатомных частицах. И все это происходило на глазах пяти сотен первокурсников. Самые отчаянные пытались делать заметки, но основная часть группы просто смотрела на меня глазами, полными ужаса. Некоторые снимали меня на видео. Две девушки буквально прижались друг к другу.

В целом, эта ситуация могла быть смешной в том случае, если бы передо мной не сидело несколько сотен шокированных студентов, решивших дать шанс химии (и мне). Многие совершенно не понимали, о чем речь. С тем же успехом я могла говорить на клингонском языке. Я на сто процентов уверена, что эта ситуация для моих учеников только подтвердила миф о том, что наука – это скучно и непонятно. Именно поэтому важно выбирать правильные слова. Особенно если мы говорим о химии.

Когда я получила первую ученую степень, я переслала маме копию моей диссертации. Она позвонила мне пару минут спустя. Я даже не успела поздороваться, как услышала смех. Я честно не могла понять, почему мать смеется. Я отправила ей не тот документ? Она увидела видео с глупенькой смешной кошкой? Она ошиблась номером?

Затем мама начала тараторить: «Кэтти, я даже не понимаю значения этих слов! Что за… нафтил?» Она смеялась так сильно, что не могла сказать ни слова. Я растерялась. Я же сказала, о чем было мое исследование, так почему она ничего не поняла? Потом я открыла документ и прочитала первую строку: «Синтез и каталитические свойства шести новых 1,2-аценафтинил N-гетероциклических карбенов на основе палладиевого (II) катализатора. Аценафтенилкарбен может быть получен с использованием мезитила или 1,2-диизопропил N-арильных заместителей».

Тогда мне все стало ясно: что прочитала моя мама, что услышали мои студенты и что чувствовала Челси. Никто из них понятия не имел, что такое «1,2-аценафтинил N-гетероциклических карбенов на основе палладиевого (II) катализатора». По правде говоря, им и не нужно было понимать. (На случай, если кому-то интересно, это тип катализатора, используемый для создания медицинских препаратов.)

Химия интересная, чертовски увлекательная, но многие химики (включая меня) говорят о ней как-то слишком заумно, так что любой человек, не имеющий научной степени, просто не поймет, о чем речь. Однако в этой книге я хочу сделать ровно противоположное. Моя цель – показать маме (и всем вам), почему я влюблена в химию. И почему вы тоже должны ее полюбить.

Обещаю, что здесь не будет унылых рассуждений о кварках и скучных описаний научных методов. Но когда вы закончите чтение и закроете книгу, то будете понимать основы химии. Вы узнаете, что химия есть везде: начиная с шампуня, которым вы моете голову по утрам, и заканчивая прекрасным закатом. Химия в воздухе, без которого вы не можете жить. Она в вещах, с которыми вы сталкиваетесь каждый день. И чем больше вы будете знать, тем сильнее будете ценить и понимать наш мир.

Посмотрите вокруг. Все, что вы видите, – это материя. Материя состоит из молекул, а молекулы из атомов. Чернила на этой странице – молекула, впитавшаяся в волокна бумаги. Клей в переплете книги – тоже молекула, соединяющая обложку и листы. Химия везде и во всем.

В первых четырех главах я расскажу вам о молекулах, атомах и химических реакциях – о том, что необходимо знать для общего понимания науки. Вы можете считать это чем-то вроде Chemistry 101[1] или пересказа школьной программы за десятый класс. (Кстати говоря, я гарантирую, что к концу этого раздела вы наконец «одолеете» атомы.)

Во второй части книги я расскажу вам о химии в повседневной жизни: в кофе, который вы варите каждое утро, в вине, которое вы пьете по вечерам. А тем временем мы с вами будем делать различные веселые вещи: убираться, готовить и заниматься спортом. Мы даже сходим на пляж. Вы узнаете, как зависят от химии ваши телефоны, солнцезащитные кремы и ткани.

Я писала эту книгу в надежде, что вы не только поймете химию, но и очаруетесь этой наукой. Хочется надеяться, что по ходу чтения вы откроете для себя множество интересных и увлекательных вещей об окружающем мире; что вы будете делиться новыми знаниями со своим партнером, детьми, друзьями, коллегами по работе… да хоть с незнакомцем в «счастливый час».

И я уверена, что любовь к химии поможет нам сделать этот мир чуточку лучше.

Поехали!

Часть I. Забудьте все, чему вас учили в школе

1. Мелочи имеют значение. Атом

Химия есть везде и во всем. Она в вашем телефоне, теле, одежде и даже в любимом коктейле! С ее помощью можно понять, почему лед в воде тает, или предположить, что случится, если мы соединим два элемента, например, натрий и хлор (спойлер: получится соль). Но что такое химия на самом деле?

Техническое определение звучит так: «Химия – это наука об энергии и материи, а также о взаимодействии двух элементов друг с другом». В данном определении под словом материя подразумевается любое вещество, а под словом энергия – реакционная способность молекулы. (Молекула – это крошечная частица, из которой состоит материя. Подробности чуть позже.)

Химики хотят предсказывать то, какие химические реакции будут происходить при взаимодействии двух молекул, или, если говорить другими словами, при взаимодействии двух веществ или химических субстанций. Мы задаем себе разные вопросы и пытаемся ответить на них. Например, вступят ли химические вещества в реакцию при комнатной температуре? Случится ли взрыв? Если добавить тепло, образуются ли новые связи?

Но чтобы можно было ответить на все эти вопросы, нужно понимать основы химии. А это значит, нам предстоит немного перенестись назад во времени. Ну, точнее, не совсем «немного» – мы отправляемся в глубокую древность.

В пятом веке до нашей эры два философа, Демокрит и Левкипп, предположили, что все в нашем мире состоит из малейших невидимых частиц, называемых атомами. В своих трудах они описали то, как миллионы атомов объединились между собой и образовали все то, что мы видим вокруг. Тут можно провести простую аналогию с кучей LEGO, из которых можно создать огромное количество предметов, вплоть до крутого Тысячелетнего сокола.

Несмотря на то, что Демокрит и Левкипп были абсолютно правы – сегодня считается, что они были первыми, кто дал определение атома, – в те времена их идеи не были приняты. Дело в том, что их предположение противоречило идеям двух других философов, Аристотеля и Платона (которые были своего рода авторитетами).

 

Аристотель и Платон считали, что вся материя (то есть все вещи и существа) возникла из сочетания четырех стихий: земли, воздуха, воды и огня. Согласно этой теории, каждый элемент обладал определенными качествами: земля – холод и сухость, вода – холод и влажность, воздух – тепло и влажность, огонь – тепло и сухость. Следовательно, все в этом мире состоит из комбинации этих четырех элементов. Философы также считали, что земля может «превращаться» в воздух, затем в огонь, затем в воду и обратно в землю. Например, когда горит бревно, то оно меняет свои качества с холода и сухости (земля) на тепло и сухость (огонь). Когда огонь потухнет, то сгоревшее бревно снова будет «принадлежать» земле, потому что оно холодное и сухое.

Если кто-то потушил огонь водой, то сгоревшее бревно становится сочетанием двух элементов: воды и земли. В данном случае мокрая зола займет намного больше места, чем кучка сухой. Вследствие этого Аристотель и Платон считали, что вся материя может изменять свой объем (становиться больше или меньше) при изменении комбинации элементов.

Демокрит был ярым противником теории Аристотеля и Платона. Он говорил, что существует предел того, насколько маленьким может быть вещество или предмет. Представим, что вы разрезали буханку хлеба пополам. Затем вы снова и снова делите получившийся кусочек на две части. Согласно Демокриту, через какое-то время у вас будет такой кусок хлеба, который будет невозможно разрезать. Именно эту неделимую частицу философ и определил как атом. И он был прав!

Но давайте не забывать, что в то время теорию Демокрита не поддержали – тогда авторитетным философом был Аристотель. Так что, когда он отверг предположение об атомах, это предположение отвергли и все остальные. К несчастью для нас, из-за Аристотеля и его ошибочных суждений следующие две тысячи лет человечество думало об окружающем мире как о комбинации огня, воды, воздуха и земли. Только вдумайтесь: две тысячи лет!

И только в 1600-х годах нашелся кто-то, кто предоставил достаточно веские доказательства того, что теория Аристотеля была неверной. Роберт Бойль, чудной физик, который любил проводить различные эксперименты и разрушать общепринятые теории. Однажды он обратил внимание на теорию Аристотеля и впоследствии написал целую книгу, в которой ее опроверг.

Бойль считал, что мир состоит из элементов – маленьких неделимых частиц материи. Звучит знакомо, правда? Публикация книги – с говорящим названием «Химик-скептик» – запустила настоящую гонку в поисках этих маленьких, невидимых частиц под названием «элементы». В то время Бойль был уверен, что распространенные вещества, например, золото и медь, представляют собой сочетание элементов. Но после публикации книги ученые обнаружили, что эти вещества (и одиннадцать других) являются самостоятельными.

Первое использование меди датируется 9000 годом до нашей эры на Среднем Востоке, но только после публикации книги Бойля люди обратили внимание на этот элемент. Только после новой теории об элементах ученые начали считать, что медь – это самостоятельный элемент, а не комбинация элементов. То же самое произошло со свинцом, золотом, серебром… Вот так были открыты первые тринадцать элементов. После этого ученые занялись поиском новых. Таким образом, в 1669 году был открыт фосфор, а в 1735 году – кобальт и платина.

Сегодня мы понимаем, что данное Бойлем определение элемента оказалось верным: элемент – это вещество, которое не может расщепиться на простейшие или мельчайшие частицы во время химической реакции. Сейчас мы понимаем, что все элементы состоят из миллионов и миллиардов мельчайших частиц материи, называемых атомами (слово произошло от использованного Демокритом atomos). Но это открытие было сделано английским ученым Джоном Дальтоном лишь в 1803 году.

Прорыв Дальтона очень часто называют «атомной теорией». Он предположил, что все атомы одного элемента (например, углерода) идентичны друг другу, и все атомы другого элемента (допустим, водорода) также будут идентичны друг другу. Но Дальтон не смог понять, почему атомы углерода отличаются от атомов водорода.

Несмотря на то, что ученые того времени много чего не знали, они одновременно и принимали, и отвергали атомную теорию. (Спойлер: они не смогли опровергнуть теорию, потому что этот труд является (и являлся) правильным.) За следующее столетие химики провели множество экспериментов, пытаясь найти нестыковки в теории Дальтона. Однако все факты по-прежнему подтверждали его гипотезу об атомах и элементах.

Однажды трое ученых, Жозеф Луи Гей-Люссак, Амедео Авогадро и Йёнс Якоб Берцелиус, попытались определить атомную массу элементов – и это привело к полнейшему хаосу. Каждый из троицы использовал разные техники и придерживался разных стандартов, из-за чего опубликованные ими труды полностью противоречили друг другу. Все выглядело настолько запутанно, что научное сообщество было вынуждено положиться на итальянского химика Станислао Канниццаро, который установил универсальный стандарт атомной массы.

Я совершенно необъективна, но если бы я активно занималась наукой в середине 1800-х годов, то даже и секунды не потратила бы на эту идею. Мне нравится разбирать и собирать обратно вещи, поэтому я поставила бы перед собой такой вопрос: если материя состоит из атомов, то из чего состоят сами атомы? Я по-прежнему не уверена кое в чем: у ученых викторианской эпохи было недостаточно технологий для исследований данного вопроса или им просто было неинтересно? К счастью, в конце 1800-х годов сэр Джозеф Джон Томпсон решил изучить строение атомов путем экспериментов с катодными лучами.

Чтобы провести эти эксперименты, Томпсон герметично запечатал стеклянную трубку с двумя металлическими электродами внутри. Проще говоря, вся конструкция выглядела как закрытая банка пива с двумя тонкими длинными полосками металла внутри. В своих экспериментах Томпсон (по возможности) выкачивал весь воздух из трубки, а затем пускал по электродам ток. В этот момент он видел разряд, передающийся от одного электрода к другому, – он назвал его катодным лучом.

В ходе этих экспериментов Томпсон определил, что катодные лучи притягиваются положительными зарядами и отталкиваются отрицательными. Он из раза в раз менял вид металла и обнаружил, что катодный луч всегда одинаковый. Томпсон был весьма доволен результатами, так как понимал, что сделал потрясающее открытие. Если катодный луч был одинаков для всех элементов и атомов, то он должен представлять собой один из блоков для формирования атома вне зависимости от его элемента. Однако примерно в то же время его коллега, Джон Дальтон, убедил общественность, что каждый атом уникален, и Томпсон забеспокоился: общественность не примет его открытие. Он продолжил проводить эксперименты.

В ходе экспериментов Томпсон выяснил, что катодный луч был легче любого известного атома. Это как если бы вы сравнивали массу всех дверных ручек в вашем доме с общей массой дома – их масса будет крошечной. Так было бы и с домом ваших родителей, и с домом соседей, и с любым другим. Томпсон обнаружил, что каждый «дом» (атом) состоит из одинакового набора «ручек», которые всегда легче общей массы. Это означало, что Томпсон смог определить маленький кусочек внутри атома. Знаете, тогда он только открыл электрон! Крошечные частицы с отрицательным зарядом.

Забегу немного вперед и скажу, что в атоме есть три составляющие: электроны, протоны и нейтроны. Протоны (частицы с положительным зарядом) и нейтроны (как вы уже догадались, частицы с нейтральным зарядом) находятся внутри ядра (в центре атома), а электроны вращаются снаружи. Представим: мое тело – это атом, а мои печень и почки – это протоны и нейтроны. Электронами будет все, что находится снаружи, например куртка или перчатки.

Мне не составит труда отдать кому-нибудь куртку или перчатки; то же самое происходит и с атомами, когда они обмениваются электронами. Однако забрать мою печень или почки будет уже не так-то просто. Это возможно? Да, возможно. Останусь ли я прежней после этой операции? Нет, не останусь. При передаче протонов возникают такие же трудности.

Элемент всегда определяется количеством протонов в ядре. Например, в атоме углерода всегда имеется шесть протонов, а в атоме азота – семь. Если атом азота каким-то образом потеряет один протон, то он перестанет быть азотом. Этот атом станет углеродом, так как в атоме углерода содержится шесть протонов. Это процесс из ядерной химии, и он никогда не проходит так просто. В большинстве случаев атом должен выстрелить нейтроном, чтобы начался ядерный распад. В настоящее время данный метод используется для генерации энергии (то есть электричества) на атомных электростанциях.

И хотя атомы очень редко теряют или приобретают новые протоны, они любят обмениваться электронами. За это ответственна структура атомов. Представьте, что вы одеваетесь в холодный зимний день. Как мы уже обсуждали, если вы атом, то ваши печень и почки будут ядром, где находятся протоны и нейтроны. Внутренний слой, прилегающий к телу – термобелье, – будет первым слоем электронов. Ваша кофта и штаны будут вторым слоем, и еще одним будут ваши куртка и болоньевые штаны.

Электроны, находящиеся на слое «куртки» или на внешней электронной оболочке (для краткости будем говорить «внешняя оболочка»), очень важны в химии. Такие электроны называются валентными, и атом с легкостью ими обменивается. Как слои одежды защищают нас зимой от низких температур, так и внешняя оболочка защищает «внутренности» атома – внутреннюю оболочку.

Электроны, находящиеся на внутренней электронной оболочке, не способны реагировать с другими атомами, так как они ограждены валентными электронами. Точно так же ваши коллеги не могут увидеть ваше нижнее белье, так как оно «ограждено» кофтой или курткой. И это идет атомам на пользу. Дело в том, что каждый слой электронов имеет отрицательный заряд, из-за чего слои отталкиваются друг от друга. Это значит, что между ними всегда есть небольшие расстояния – точно такие же, какие получаются между вашей курткой и кофтой.

Позвольте мне развить эту метафору. Атомы могут быть разного размера, и все сходится на том, сколько слоев «носит» атом. Кто-то может ходить в многослойной одежде, чтобы согреться в холодную погоду, а кто-то круглый год ходит в шортах и сандалиях. Это работает и с атомами: у маленьких атомов намного меньше электронных слоев, чем у больших.

Когда я говорю о валентных электронах, я имею в виду электроны на «курточном» слое внешней оболочки атома. В солнечный день вы снимите куртку, чтобы лучи падали прямо на вашу кожу… То же самое и с валентными электронами: атом всегда готов «распрощаться» с ними, чтобы те вступили в реакцию с внешними силами. Это может показаться шокирующим, но до 1932 года ученые не имели представления о том, что я вам только что рассказала. Во многом это связано с тем, что они были вынуждены работать в изоляции, поэтому обладали ограниченной информацией (просто вспомните времена до появления интернета). До недавнего времени изучение химии было медленным и монотонным процессом. К счастью, теперь нам известно, что атомы состоят из протонов, электронов и нейтронов, а также что они могут обмениваться электронами. К тому же примерно в то время ученые поняли, что им нужен один способ классификации атомов. И тогда была создана периодическая таблица.

Периодическая таблица – это нечто большее, чем обычный справочник, который вы используете на уроках естествознания. Для меня и подобных мне ученых она важна тем, что, только посмотрев на нее, я могу получить всю нужную информацию об определенном элементе, его характеристиках и о том, как атомы этого элемента будут себя вести.

Давайте начнем с основ. Когда таблица только разрабатывалась, нужно было присвоить каждому элементу химическое название и символ. Это может показаться чем-то простым, но на самом деле все не так. Часто бывало, что два человека в один и тот же момент открывали – или им казалось, что они открыли – один и тот же элемент и давали ему разные названия. И тогда вставал вопрос: а какое название верное? Как вы понимаете, тогда возникало множество споров, например, когда панхромий был назван ванадием или когда вольфрам был назван тунгстеном.

Еще совсем недавно, в 1997 году, между США, Россией и Германией шла ожесточенная борьба из-за названий элементов со 104-го по 109-й. В 2002 году Международный союз теоретической и прикладной химии (ИЮПАК) дал рекомендации касательно того, как следует называть элементы. Сейчас эти рекомендации соблюдаются, но иногда может пройти около десяти лет, прежде чем новому элементу дадут официальные название.

Определить химический символ каждого элемента было намного проще, так как обычно это аббревиатура названия: Н – это водород, а С – углерод. Но символы некоторых элементов не так очевидны. Например, химический символ железа – Fe – происходит от латинского ferrum. Сюда же можно отнести W – вольфрам (tungsten) и Hg – hydrargyrum (ртуть).

 

Когда каждому элементу присвоены имя и символ, вычисляется его атомный номер (или зарядовое число). Он равен количеству протонов в ядре. Водород имеет первый атомный номер, и это означает, что в его ядре один протон. На данный момент самым большим порядковым номером является 118. Элемент под именем оганесон (Og), в его ядре, как можно догадаться, 118 протонов. А это означает, что оганесон должен иметь 118 электронов снаружи ядра. Дело в том, что атомный номер указывает не только на количество протонов в ядре, но также и на количество электронов вне ядра. Важно помнить, что все элементы по сути являются нейтральными. Следовательно, количество протонов внутри ядра равно количеству электронов снаружи. Если бы мы посмотрели на атомный номер водорода – 1, – то поняли бы, что у него один протон и один электрон. Немного подробнее: протон внутри имеет положительный (+1) заряд, который нейтрализует электрон с отрицательным (–1) зарядом, делая элемент нейтральными. То же самое и с оганесоном: (118) + (–118) = 0.

К сожалению, с нейтронами не все так просто. Число нейтронов колеблется от атома к атому, даже если это атомы одного и того же элемента. Поэтому химики решили добавить еще одно число в периодическую таблицу – атомная масса. Это сумма протонов и нейтронов внутри ядра элемента. В отличие от атомного номера, атомная масса редко является целым числом. Дело в том, что ученые используют средневзвешенное количество нейтронов в атоме, а затем добавляют его к сумме протонов. Так и определяется атомная масса элемента.

Как правило, в отдельных атомах поддерживается соотношение протонов и нейтронов, равное 1 к 1. Это означает, что мы сможем узнать атомную массу, если удвоим атомный номер. Например, атомный номер магния – 12, а его атомная масса – 24,31 (12 протонов и средневзвешенное количество нейтронов, равное 12,31). Атомный номер кальция – 20, а его атомная масса 40,08 (20 протонов и средневзвешенное количество нейтронов, равное 20,08).

Но из каждого правила есть исключения. Например, порядковый номер урана – 92, поэтому ожидается, что его атомная масса будет составлять 184. Однако она составляет 238,03 из-за изотопов урана, в которых содержится различное количество нейтронов. Большинство атомов, подобных урану, имеют несколько изотопов. Изотоп возникает в том случае, если два или более атома одного элемента имеют различное количество нейтронов. Мы не выделяем «лучшие» изотопы; мы собираем все атомы и вычисляем среднее количество нейтронов. Затем это число используется в подсчете атомной массы. Уран называется уран-238. Магний и кальций – магний-24 и кальций-40 соответственно.

Изотопы

Обычно я говорю, что изотопы – это атомы со своим характером. Они образуются, когда два или больше атома одного элемента имеют разное количество нейтронов. Изотопы хорошо распространены, однако в школе мы не уделяем достаточно времени на их изучение, так как нейтроны нейтральны. Соответственно они не влияют на поведение атома в химической реакции. (Вместо этого мы сосредотачиваемся на том, что влияет на поведение атома: протонах и электронах.)

Как я уже говорила, ученые охарактеризовали каждый открытый электрон. И знаете, я считаю, что это круто. Как и Lady Gaga, изотопы были «рождены такими» и совершенно спокойно существуют с парой лишних нейтронов.

Прекрасный пример – углерод. Большинство атомов углерода имеют шесть нейтронов и шесть протонов. Однако у некоторых их семь или восемь. Лишние нейтроны никак не влияют на свойства атомов углерода, однако это делает их всех изотопами.

Это можно сравнить с собаками. Представьте двух далматинцев: они выглядят одинаково, но у одного на несколько пятен больше. Две собаки практически одинаковые, и эти несколько «лишних» пятен не означают, что одна из них больше не далматинец. Точно так же работают изотопы: дополнительные нейтроны не меняют атом, элемент или реактивную способность. Это просто дополнительное определение.

Когда ученые определились с химическим названием, символом, атомным номером и атомной массой для каждого из элементов системы, они решили организовать вещества таким образом, чтобы можно было предугадать их химическую активность. Ученым было важно знать, что при реакции между двумя элементами не случится взрыва или выделения ядовитых газов. Лучший способ сделать это – найти между атомами что-то общее, сгруппировать их по физическим и химическим свойствам. Было сделано несколько попыток. Немецкий химик Иоганн Дёберейнер хотел распределить все элементы в группы по три, он заметил, что большие атомы чаще склонны к взрыванию. Вскоре другой немецкий химик, Питер Кремер, попытался объединить две триады, чтобы образовалась Т-образная фигура. Проблема заключалась в том, что при подобном раскладе ученым пришлось бы проверять множество триад, что сильно осложнило бы сравнение одной группы с другой.

Однако было двое ученых, работавших отдельно, – Дмитрий Менделеев и Лотар Мейер, – которые решили, что можно расставить все химические элементы в одной таблице в зависимости от их атомной массы. Они собрали все Т-образные триады Кремера – словно головоломку – и получили первую таблицу химических элементов.

Уникальность периодической таблицы Менделеева заключается в том, что в ней были два «новых» элемента. Составляя таблицу, химик заметил, что между атомными массами элементов существует закономерность, и понял, что ему нужно оставить место для еще двух элементов, которые только предстоит открыть. Пример: предположим, что учитель математики предложил вам определить пропущенное число в ряде: 2, 4, 8, 10. Надеюсь, вы понимаете, что отсутствует число 6 и что полный ряд должен выглядеть так: 2, 4, 6, 8, 10.

В принципе, Менделеев сделал то же самое. Были группы атомов с одинаковым числом валентных электронов, но структура атомных масс отличалась. Менделеев предположил не только то, что нам предстоит открыть новые элементы, но и то, какой атомной массой они будут обладать. И, как и множество ученых, о которых я уже говорила, Менделеев оказался прав. Галлий (Ga) и германий (Ge) были открыты в 1875 и 1886 годах соответственно, и вот тогда труд Менделеева по-настоящему оценили.

Современная периодическая таблица основана на периодической таблице, созданной Менделеевым. Она состоит из семи периодов и восемнадцати групп. Каждая ячейка – это отдельный элемент; в ячейке пишется основная информация об элементе: химический символ, химическое название, атомный номер, атомная масса. Имея всю информацию под рукой, химики вроде меня и вас могут с легкостью определить количество протонов, электронов и валентных электронов того или иного атома.

Периодическая таблица очень важна для ученых: она может дать много информации об элементах, из которых состоит вся материя этого мира. Важна настолько, что в прошлом году мой университет отпраздновал 150-летие таблицы Менделеева и по этому поводу устроил вечеринку. Там была таблица, выложенная из кексов, я продемонстрировала несколько опытов, декан нашего университета произнес прекрасную речь. Это была самая «ботанская» вечеринка в моей жизни, и знаете, она мне очень понравилась!

В книге есть таблица Менделеева, однако если вам удобнее работать с электронной версией, то я настоятельно рекомендую сайт ptable.com. Я еще буду обращаться к периодической таблице, поэтому мне важно убедиться, что вы знаете, как правильно ею пользоваться. Я буду ссылаться на таблицу в разделе, посвященном здоровью и благополучию. Также она нам понадобится, когда мы будем определять влияние химии на повседневную жизнь. Нам важно знать положение элементов в системе: чем быстрее мы найдем необходимый нам элемент, тем быстрее сможем работать. Понимание периодической таблицы позволит понять, почему вы должны постоянно пользоваться одной и той же маркой шампуня и кондиционера для волос, а также почему ваши торты выглядят совсем не так, как в шоу «Лучший пекарь Британии».

Давайте рассмотрим один пример. Откройте периодическую таблицу и найдите ячейку с химическим символом водорода H в верхней левой части. Если вы посмотрите в верхний левый угол ячейки H, то увидите там число 1. Это атомный номер элемента, и он всегда стоит именно там. В нижней части вы видите число 1,008 – это атомная масса.

Вы можете заметить, что водород располагается в начале столбца. Столбцы называются группами или семействами, а номер группы указывает на количество валентных электронов каждого из элементов. (Помните, что валентные электроны располагаются на внешней оболочке, как наша крутка.)

1Chemistry 101 – полезное приложение для изучения химии. (Прим. лит. ред.)
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»